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Appendix for Latent Dirichlet Allocation Models

for Image Classification

APPENDIX I

VARIATIONAL INFERENCE IN LDA MODELS

Given an image I = {w1, . . . , wN}, wn ∈ V , inference

consists of computing the posterior distribution of the unob-

served variables, P (π, z1:N |I)1. Learning involves estimating

the parameters (α,Λ1:K), by maximizing the log likelihood,

l = logP (D) of a training image dataset D. Inference and

learning are not tractable under LDA. A wide range of approx-

imate inference methods have been proposed, such as Laplace

or variational approximations, sampling methods, etc. We

adopt variational inference. Variational methods approximate

the posterior P (π, z1:N |w1:N ) by a mean-field variational

distribution q(π, z1:N ), indexed by free variational parameters,

within some class of tractable probability distributions F .

These distributions usually assume independent factors,

q(π, z1:N) = q(π;γ)
∏

n

q(zn;φn) (1)

where q(y) and q(zn) are categorical models, and q(π) a

Dirichlet distribution. Given an observation w1:N , the opti-

mal variational approximation minimizes the Kullback-Leibler

(KL) divergence between the two posteriors

q∗ = argmin
q∈F

KL(q(π, z1:N)||P (π, z1:N |w1:N )) (2)

= argmin
q∈F

logP (w1:N )− L(γ,φ;α,Λ) (3)

where

L(γ,φ;α,Λ) = Eq[logP (π, z1:N , w1:N ;α,Λ1:K)]

− Eq[log q(π, z1:N ;γ,φ1:N )] (4)

is commonly known as the evidence lower bound (ELBO) [1].

This also lower bounds the true log likelihood of an image,

for an arbitrary variational distribution q(π, z1:N ) (see [2],

Appendix A.3).

Since the data likelihood P (w1:N ) is constant for an ob-

served image, the optimization problem of (3) is identical to

the maximization of the ELBO,

q∗(π, z1:N) = argmax
q∈F

L(γ,φ;α,Λ) (5)

From Appendix A.3 of [2], the update rule for coordinate

descent of the variational parameters is

γ∗k =
∑

n

φnk + αk (6)

φ∗nk ∝ Λkwn
exp [ψ(γk)] (7)

such that
∑

k φnk = 1 and ψ is the Digamma function [3].

1Henceforth, wherever clear from context we shall omit the subscripts of
probability distributions.

APPENDIX II

PARAMETER ESTIMATION IN CLDA

The parameters (η,α1:C ,Λ1:K) of cLDA are learned us-

ing variational expectation-maximization (EM). This iterates

between:

a) Variational E-Step: approximates the posterior

P (πd, zd
1:N |Id, yd) given image Id = {wd

1 , . . . , w
d
N} by the

variational distribution

q(πd, zd
1:N) = q(πd;γd)

∏

n

q(zdn;φ
d
n). (8)

Similar to the variational inference of LDA (see Appendix I),

the variational parameters can be computed with the updates

γd∗k =
∑

n

φdnk + αydk (9)

φd∗nk ∝ Λkwd
n

exp
[

ψ(γdk)
]

(10)

where
∑

k φ
d
nk = 1. Note that in cLDA, where each class is

associated with a separate prior over the topic simplex, (9)

differs from (6), in that α parameters are class specific.

b) M-Step: computes the values of the parameters

(α1:C ,Λ1:K). αy is obtained by maximizing,

α∗
y = argmax

αy

−
∑

d

δ(yd, y) logB(αy)

+
∑

d

∑

k

δ(yd, y)(αydk − 1)Eq[log π
d
k] (11)

with

Eq[log π
d
k] = ψ(γdk)− ψ(

∑

l

γdl ) (12)

B(αy) =

∏

k(Γ(αyk)

Γ(
∑

k αyk)
(13)

and Γ() the Gamma function. This optimization can be carried

out by the method of Newton-Raphson, as detailed in [3].

Λk is obtained by maximizing,

Λ∗
kv = argmax

Λk

∑

d

∑

n

δ(wd
n, v)φ

d
nk log Λkv (14)

such that
∑|V|

v=1
Λkv = 1. This is done with the method of

Lagrange multipliers, which results in the closed form update

Λkv ∝
∑

d

∑

n

δ(wd
n, v)φ

d
nk (15)

where the proportionality symbol implies that Λk is normal-

ized to sum to 1. Note that, as is common, we assume a

uniform class prior ηy = 1

C
, ∀y ∈ Y .
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APPENDIX III

PARAMETER ESTIMATION IN TOPIC-SUPERVISED LDA

MODELS

In this appendix, we discuss parameter estimation for ts-

cLDA. A similar approach can be used for the other topic-

supervised models. Topic supervision decouples cLDA learn-

ing into two steps: 1) learning of the parameters Λ1:K of

the topic-conditional distributions, and 2) learning of the

parameters α1:C of the class-conditional distributions2.

A. Learning Topic Conditional Distributions

As discussed in Section V, topics are defined over the class

vocabulary T = V . In the absence of individual topic labels

zdn for visual words wd
n, it is assumed that all topic labels

are equal to the image class yd, i.e. zdn = yd ∀n, d. Although

this is not true, this assumption has been shown effective both

through successful design of image labeling systems [5] and

theoretical connections to multiple instance learning. In fact,

this is an implicit assumption in learning the parameters of the

flat model. The ML estimates of Λk are obtained from

Λ∗
kv = argmax

Λk

∑

d

∑

n

δ(yd, k)δ(wd
n, v) log Λkv (16)

such that
∑|V|

v=1
Λkv = 1. Using the method of Lagrange

multipliers, the solution is

Λkv =

∑

d

∑

n δ(y
d, k)δ(wd

n, v)
∑

j

∑

d

∑

n δ(y
d, j)δ(wd

n, v)
(17)

B. Learning Class Conditional Distribution with known zdn

Under the weak learning assumption, where zdn are equated

to the class of the image, i.e. zdn = yd, ∀n, d, the class-

conditional distributions for cLDA can be learned using stan-

dard EM algorithm. This iterates between two steps:

c) E-Step: computes

E
π

d|yd,zd
1:N

[log πd
k] = ψ(αydk + nd

k)− ψ(
∑

l

αydl + nd
l )

(18)

where nd
k =

∑

n δ(z
d
n, k).

d) M-Step: computes the values of the parameters αy by

maximizing,

α∗
y = argmax

αy

−
∑

d

δ(yd, y) logB(αy)

+
∑

d

∑

k

δ(yd, y)(αydk − 1)E
π

d|yd,zd
1:N

[log πd
k] (19)

similar to that of standard cLDA (see Appendix II).

C. Learning Class Conditional Distribution with unknown zdn

As discussed in Section V-C learning the class-conditional

distributions under weak supervision leads to degenerate so-

lutions. Instead, they are learned assuming unknown patch

labels zdn. This is done by maximizing the data likelihood,

P (yd, wd
1:N ), using the variational EM algorithm, iterating

between two steps:

2Note that η is again assumed to follow a uniform distribution.

e) Variational E-Step: computes

γd∗k =
∑

n

φdnk + αydk (20)

φd∗nk ∝ Λkwd
n

exp
[

ψ(γdk)
]

(21)

where the proportionality symbols implies that φdn is normal-

ized to sum to 1.

f) M-Step: computes the values of parameters α1:C (note

that Λ1:K is already computed), using (11).

APPENDIX IV

EXPERIMENTAL SETUP

In this appendix, we describe the experimental setup used

to evaluate the performance of both css-LDA and topic-

supervised LDA models.

A. Datasets

All experiments were based on datasets from the scene

classification literature.

1) Natural Scene Categories (N15, N13, N8): This dataset

consists of images of natural scenes. The initial version

consisted of 8 different scene categories, viz. “coast”, “forest”,

“highway”, “insidecity”, “mountain”, “opencountry”, “street”,

“tallbuilding” and has been used in [4], [10], [6]. Five more

categories, viz. “bedroom”, “suburb”, “kitchen”, “livingroom”,

“office” were added in [8]. This version has been further used

in [6], [10]. Two more categories, viz. “store”,“industrial”

were added in [7], for a total 15 categories. We refer to

the complete 15-category version as N15, the 13-category

subset as N13 and the original 8-category subset as N8.

Each category contains 200 to 400 images, of average size

300×250 pixels. One hundred images per scene were used to

learn models, the remaining being used as test set. The final

experiments were repeated six times, with random train/test

splits.

2) UIUC Sports Dataset (S8): This dataset contains images

from eight sports categories, viz. “badminton”, “bocce”, “cro-

quet”, “polo”, “rock climbing”, “rowing”, “sailing”, “snow-

boarding”. It was first proposed in [9] for LDA based classifi-

cation, and subsequently used by [14] to evaluate sLDA. Each

category has 137 to 250 large size images. In our experiments,

the images were resized to a maximum of 256 pixels along

the larger border. In all, there are 1579 images. As in [9],

70 images per scene were used to learn the models, and 60

images as test set. Again, the final experiments were repeated

6 times with random train/test splits.

3) Corel Image Collection (C50): This dataset consists of

images from 50 Corel Stock Photo CDs, where each CD

contains 100 images of a common scene. The annotated

version of this dataset (where each image is further annotated

with 1-5 concepts) is commonly used for the evaluation of

image annotation systems [11], [12], [13]. In this work, we

used the 50 scene classes, each corresponding to one CD in the

collection, as the ground truth for classification. For each CD,

90 images were used to learn class models and the remaining

for testing. All images were normalized to size 181× 117 or

117× 181 and converted from RGB to the YBR color space.
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B. Appearance features

Two feature transforms were used for appearance repre-

sentation, viz. scale invariant feature transform (SIFT) and

discrete cosine transform (DCT). SIFT features were used for

monochrome images and DCT features for color images. For

SIFT, as is common in the literature, 128-dimensional SIFT

descriptors were computed over 16×16 pixel patches, sampled

densely over a grid with a regular spacing of 8 pixels in both

the horizontal and vertical directions. On average, 1000 SIFT3

features were computed per image. DCT features were also

computed on a dense regular grid, with a step of 8 pixels.

8 × 8 image patches were extracted around each grid point,

and DCT coefficients computed per patch and color channel.

This resulted in a 64 dimensional space per channel, of which

we used the first 43 DCT coefficients.

Codebooks of visual words were obtained with K-means

clustering, for K ranging from 128 to 4096. For each dataset,

codebooks were generated from a random collection of 300
examples per training image. K-means initialization was per-

formed with a vector quantizer designed by the Linde-Buzo-

Gray (LBG) algorithm, using a variation of the cell splitting

method described in [15]. For experiments using LDA and

sLDA, we used the code available online4. This code was mod-

ified for cLDA, topic-supervised LDA and css-LDA (which

will be made available online). The number of topics was

varied from 10 to 100 for topic discovery approaches. For

topic-supervised models, the number of topics was equal to

the number of classes. The αk parameter was set to 1 in all

experiments except cLDA and ts-cLDA, where an asymmetric

αy parameter was learned per class. Although not explicitly

shown in Figure 1, we used the “smoothed” version of various

models. The flat model is regularized using Laplace smoothing

with a hyper-parameter of 0.1 and LDA models are regularized

using a Dirichlet prior on the topic-distributions [2], using a

symmetric hyper-parameter of 0.001. The performance of the

various models was not very sensitive to the choice of both

αk and the smoothing parameter.
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