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The benefits of integrating attention and object recognition are investigated. While
attention is frequently modeled as a pre-processor for recognition, we investigate the
hypothesis that attention is an intrinsic component of recognition and vice-versa. This
hypothesis is tested with a recognition model, the hierarchical discriminant saliency
network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class
according to the principles of discriminant saliency. As a model of neural computation,
the HDSN has two possible implementations. In a biologically plausible implementation,
all layers comply with the standard neurophysiological model of visual cortex, with
sub-layers of simple and complex units that implement a combination of filtering,
divisive normalization, pooling, and non-linearities. In a convolutional neural network
implementation, all layers are convolutional and implement a combination of filtering,
rectification, and pooling. The rectification is performed with a parametric extension of
the now popular rectified linear units (ReLUs), whose parameters can be tuned for the
detection of target object classes. This enables a number of functional enhancements
over neural network models that lack a connection to saliency, including optimal
feature denoising mechanisms for recognition, modulation of saliency responses by the
discriminant power of the underlying features, and the ability to detect both feature
presence and absence. In either implementation, each layer has a precise statistical
interpretation, and all parameters are tuned by statistical learning. Each saliency detection
layer learns more discriminant saliency templates than its predecessors and higher
layers have larger pooling fields. This enables the HDSN to simultaneously achieve high
selectivity to target object classes and invariance. The performance of the network
in saliency and object recognition tasks is compared to those of models from the
biological and computer vision literatures. This demonstrates benefits for all the functional
enhancements of the HDSN, the class tuning inherent to discriminant saliency, and
saliency layers based on templates of increasing target selectivity and invariance.
Altogether, these experiments suggest that there are non-trivial benefits in integrating
attention and recognition.
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1. INTRODUCTION
Recent research in computational neuroscience has enabled sig-
nificant advances in the modeling of object recognition in visual
cortex. These advances are encoded in recent object recogni-
tion models, such as HMAX (Riesenhuber and Poggio, 1999;
Serre et al., 2007; Mutch and Lowe, 2008) the convolutional net-
works of Pinto et al. (2008); Jarrett et al. (2009) and a number
of deep learning models (Hinton et al., 2006; Krizhevsky et al.,
2012). When compared to classical sigmoid networks (LeCun
et al., 1990, 1998), these models reflect an improved under-
standing of the neurophysiology of visual cortex (Graham, 2011),
recently summarized by the standard neurophysiological model
of Carandini et al. (2005). This consists of hierarchical layers of
simple and complex cells (Hubel and Wiesel, 1962). Simple cells

implement a combination of filtering, rectification, divisive con-
trast normalization, and sigmoidal non-linearity, which makes
them selective to certain visual features, e.g., orientation. Complex
cells pool information from multiple simple cells, producing an
invariant representation. While the receptive fields of cells at the
lower hierarchical levels resemble Gabor filters of limited spa-
tial extent, cells at the higher layers have much more complex
receptive fields, and pool information from larger regions of sup-
port (Poggio and Edelman, 1990; Perrett and Oram, 1993). This
makes them more selective and invariant than their low-level
counterparts. Extensive experiments have shown that accounting
for simple and complex cells (Serre et al., 2007), using nor-
malization and rectification (Jarrett et al., 2009), optimizing the
sequence of these operations (Pinto et al., 2009), or learning deep

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 109 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2014.00109/abstract
http://community.frontiersin.org/people/u/126939
http://community.frontiersin.org/people/u/180748
mailto:shan@idanalytics.com
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Han and Vasconcelos Hierarchical discriminant saliency networks

networks with multiple layers (Krizhevsky et al., 2012) can be
highly beneficial in terms of recognition performance.

There are, nevertheless many aspects of cortical processing
that remain poorly understood. In this work, we consider the
role of attention in object recognition, namely how attention
and recognition can be integrated in a shared computational
architecture. We consider, in particular, the saliency circuits
that drive the attention system. These circuits are usually clas-
sified as either bottom-up or top-down. Bottom-up mecha-
nisms are stimulus driven, driving attention to image regions
of conspicuous stimuli. Many computational models of bottom-
up saliency have been proposed in the literature. They equate
saliency to center-surround operations (Itti et al., 1998; Gao and
Vasconcelos, 2009), frequency analysis (Hou and Zhang, 2007;
Guo et al., 2008), or stimuli with specific properties, e.g., low-
probability (Rosenholtz, 1999; Bruce and Tsotsos, 2006; Zhang
et al., 2008), high entropy (Kadir and Brady, 2001), or high
complexity (Sebe and Lew, 2003). An extensive review of bottom-
saliency models is available in Borji and Itti (2013) and an experi-
mental comparison of their ability to predict human eye fixations
in Borji et al. (2013). While these mechanisms can speed up
object recognition (Miau and Schmid, 2001; Walther and Koch,
2006), by avoiding an exhaustive scan of the visual scene, they
are not intrinsically connected to any recognition task. Instead,
bottom-up saliency is mostly a pre-processor of the visual stim-
ulus, driving attention to regions that are likely to be of general
vision interest. On the other hand, top-down saliency mecha-
nism are task-dependent, and emphasize the visual features that
are most informative for a given visual task. These mechanisms
assign different degrees of saliency to different components of a
scene, depending on the recognition task to be performed. For
example, it is well known since the early studies of Yarbus (1967)
that, when subjects are asked to search for different objects in a
scene, their eye fixation patterns can vary significantly. It has also
long been known that attention has a feature based component.
More precisely, human saliency judgments can be manipulated by
enhancement or inhibition of the feature channels of early vision,
e.g., color or orientation (Maunsell and Treue, 2006). This type of
feature selection should, in principle, be useful for recognition.

Overall, there are several reasons to study the integration of
recognition and top-down saliency. First, the ability to simulta-
neously achieve selectivity and invariance is a critical requirement
of robust image representations for recognition. By increasing the
selectivity of neural circuits to certain classes of stimuli, the addi-
tion of top-down saliency, which increases selectivity to the object
classes of interest, could potentially improve recognition perfor-
mance. Second, there is some evidence that adding an attention
mechanism to computational models of object recognition can
improve their performance. For example, spatially selective units
are known to substantially improve HMAX performance (Mutch
and Lowe, 2008). In fact, as we will show later in this work, some
of the recent object recognition advances in computer vision, such
as the now widely used SIFT descriptor, can be interpreted as
saliency mechanisms. Although these are purely stimulus driven,
i.e., bottom-up, the gains with which they are credited again
suggest that saliency has a role to play in recognition. Third,
the connection to saliency provides the intermediate layers of a

recognition network with a functional justification. Rather than
a side effect of a holistic network optimization with respect to
a global recognition criterion, they become individual saliency
detectors, each attempting to improve on the saliency detection
performance of their predecessors. This has a simpler evolution-
ary justification, under which (1) visual systems would evolve one
layer at a time and (2) the search for improved performance in
attention tasks leads naturally to object recognition networks.

All these observations suggest the hypothesis that, rather than
a simple bottom-up pre-processor that determines conspicuous
locations to be sequentially analyzed by the visual system, saliency
could be embedded in object recognition circuits. Our previous
work has also shown that, under the discriminant saliency princi-
ple, the computations of saliency can be mapped to the standard
neurophysiological model (Gao et al., 2008; Gao and Vasconcelos,
2009). While we have exploited this mapping extensively for mod-
eling bottom-up saliency, the underlying computations can be
naturally extended to top-down saliency. In fact, under this exten-
sion, the saliency operation boils down to the discrimination
between an object class and the class of natural images. This is
intrinsically connected to object recognition. It, thus, appears that
biology could have chosen to embed saliency in the recognition
circuitry, if this had an evolutionary benefit, i.e., if embedding
saliency in object recognition networks improves recognition per-
formance. One of the goals of this work is to investigate this
question. For this, we propose a family of hierarchical discriminant
saliency networks (HDSNs), which jointly implement attention
and recognition. More precisely, HDSNs are networks whose lay-
ers implement top-down saliency detection, based on features
of increasing selectivity and invariance. These layers are stacked,
so as to enhance the saliency detection of their predecessors.
Since higher layers become more selective for the target objects,
object recognition should be enhanced as a by-product of the
saliency computation. All saliency detectors are derived from the
discriminant saliency principle of Gao and Vasconcelos (2009)
and explicitly minimize recognition error, using the top-down
saliency measure of Gao et al. (2009). This is implemented with
the biologically plausible computations of Gao and Vasconcelos
(2009). In this way, HDSNs are consistent with the standard neu-
rophysiological model (Carandini et al., 2005), but have a precise
computational justification, and a statistical interpretation for all
network computations. All parameters can thus be tuned by sta-
tistical learning, enabling the explicit optimization of the network
for recognition.

A number of properties of HDSNs are investigated in this
work. We start by showing that HSDNs can be implemented in
multiple ways. In addition to the biologically plausible implemen-
tation, they can be interpreted as an extension of convolutional
neural network models commonly used for recognition. This
extension consists of a new type of rectifier function, which
is a generalization of the recently popular rectified linear unit
(ReLU) (Nair and Hinton, 2010; Krizhevsky et al., 2012). The gen-
eralization is parametric and can be tuned according to the statis-
tics of the object classes of interest. This tuning enables the
network to implement behaviors, such as switching from selec-
tivity to feature presence to selectivity to feature absence, that are
not possible with the units in common use. The computation
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of saliency also enables the network to learn more discrim-
inant receptive fields. In result, receptive fields at the higher
network layers become tuned for configurations of salient low-
level features, improving both saliency and object recognition
performance. Overall, HDSNs are shown to exhibit the ability to
model both salient features and their configurations, to replicate
the human ability to identify objects due to both feature pres-
ence and absence, to modulate saliency responses according to
the discriminant power of the underlying features, and to imple-
ment optimal feature denoising for recognition. The introduction
of HDSNs is complemented by the analysis of several recogni-
tion methods from computer vision (Vasconcelos and Lippman,
2000; Lazebnik et al., 2006; Zhang et al., 2007; Boiman et al.,
2008; Yang et al., 2009; Zhou et al., 2009), which are mapped to
a canonical architecture with many of the attributes of the bio-
logical models. This enables a clear comparison of methods from
the two literatures. A rigorously controlled investigation, involv-
ing models from both computational neuroscience and computer
vision, shows that there are recognition benefits to both the
class-tuning inherent to discriminant saliency and the hierarchi-
cal organization of the HDSN into saliency layers of increased
target selectivity and invariance. Experiments on standard visual
recognition datasets, as well as a challenging dataset for saliency,
involving the detection of panda bears in a cluttered habitat, show
that these advantages can translate into significant gains for object
detection, localization, recognition, and scene classification.

2. METHODS
We start with a brief review of discriminant saliency.

2.1. DISCRIMINANT SALIENCY
Discriminant saliency is derived from two main principles: that
(1) neurons are optimal decision-making devices and (2) opti-
mality is tuned to the statistics of natural visual stimuli. The
visual stimulus is first projected into the receptive field of a neu-
ron, through a linear transformation T , which produces a feature
response X. The neuron then attempts to classify the stimulus as
either belonging to a target or background (also denoted null)
class. The definitions of target and background class define the
saliency operation. For bottom-up saliency, they are the feature
responses in a pair of center (target) and surround (background)
windows co-located with the receptive field (Gao et al., 2008; Gao
and Vasconcelos, 2009). In this work we consider the problem of
top-down saliency, where the target class is defined by the fea-
ture responses to a stimulus class of interest and the background
class by the feature responses to the class of natural images (Gao
et al., 2009). In the object recognition context, the stimulus class
of interest is a class of objects. Neurons implement the optimal
decision rule for stimulus classification in the minimum probabil-
ity of error (MPE) sense (Duda et al., 2001; Vasconcelos, 2004a).
Saliency is then formulated as the discriminability of the visual
stimulus with respect to this classification. Stimuli that can be eas-
ily assigned to the target class are denoted salient, otherwise they
are not salient. The discriminability score used to measure stimu-
lus saliency is computed in two steps, implemented by two classes
of neurons that comply with the classical grouping into simple
and complex cells. Simple cells first compute the optimal decision

rule for stimulus classification into target and background, at each
location of the visual field. Complex cells then combine simple
cell outputs to produce a discriminability score.

2.1.1. Statistical model
Consider a simple cell, whose receptive field is centered at loca-
tion l of the visual field. The visual stimulus at l is drawn from
class Y(l), where Y(l) = 1 for target and Y(l) = 0 for background.
The goal of the cell is to determine Y(l). For this, it applies a
linear transformation T to the stimulus in a neighborhood of
l (the receptive field of the cell) , producing a feature response
X(l) at that location. The details of the transformation are not
critical, the only constraint is that it is a bandpass transforma-
tion. Using the well know-fact that bandpass feature responses
to natural images follow the generalized Gaussian distribution
(GGD) (Buccigrossi and Simoncelli, 1999; Huang and Mumford,
1999; Do and Vetterli, 2002), the feature distributions for target
and background are

PX|Y (x(l)|i) = β

2α�(1/β)
e
−
( |x(l)|

αi

)β
i ∈ {0, 1}. (1)

The parameters αi are the scales (variances) of the two distri-
butions, while β is a parameter that determines their shape.
For natural imagery, β is remarkably consistent, taking values
around 0.5 (Srivastava et al., 2003). This value is assumed in
the remainder of this work. The scales αi are learned from two
training samples R1,Ro of examples from target and null class,
respectively, by maximum a posteriori (MAP) estimation, using
a conjugate Gamma prior of hyper-parameters η, ν. As described
in Gao and Vasconcelos (2009) the MAP estimates of α1 and α0

are

α
β

i = 1

κ

∑
xj ∈ Ri

|xj|β + ν, i ∈ {0, 1}, κ = n + η

β
. (2)

The values of the prior parameters are not critical. They are used
mostly to guarantee that the estimates of αi are non-zero. In this
work, we use η = 1 and ν = 10−3.

2.1.2. Saliency measure
A simple cell uses the above model of natural image statistics to
compute the posterior probability of the target class, given the
observed feature response X(l)

PY |X (1|x(l)) = σ
(
g[x(l)]) , (3)

where σ (x) = 1/(1 + e−x) is the sigmoid function and g(x) the
log-likelihood ratio (LLR)

g(x) = log
PX|Y (x|1)

PX|Y (x|0)
=
( |x|
α0

)β
−
( |x|
α1

)β
+ T, (4)

with T = log
(
α0
α1

)
. Simple cells are organized into convolutional

layers, which repeat the simple cell computation at each loca-
tion of the visual field. Each layer produces a retinotopic map
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of posterior probabilities PY |X (1|x(l)) given the feature responses
derived from a common transformation T . The computation is
repeated for various transformations Ti, producing several chan-
nels of simple cell response. As illustrated in the left of Figure 1,
these channels are computed at multiple resolutions, by applying
each transformation to re-scaled replicas of the visual stimulus. In
our implementation, we use 10 scales, with subsampling factors of
2i/4, i ∈ {0, . . . , 9}.

The saliency of the stimulus at location l is evaluated by a
complex cell that combines the responses of afferent simple cell
responses in a neighborhood N(l) (its pooling neighborhood)
into the discriminability score

S(l) = EX(l)
(�g(X)�+

)
, (5)

where EX(l) denotes the expectation with respect to the dis-
tribution of X in N(l) and �x�+ = max (x, 0) is the half-wave
rectification function. This rectification assures that the score is
non-negative, by zeroing the LLR g(x) at all locations where the
outcome of the Bayes decision rule for MPE classification

Ŷ(l) =
{

1, if g[x(l)] ≥ 0
0, if g[x(l)] < 0

(6)

assigns the response to the background class (i.e., chooses
Ŷ(l) = 0). Large values of the score S(l) indicate that the feature

response X(l) can be clearly assigned to the target class, i.e., the
LLR g(x) is both positive and large. For such stimuli, the posterior
probability of (3) is close to one. In this case, the visual stimulus
is salient. Small scores indicate that this is not the case. The com-
putation of the saliency score of (5) is implemented by replacing
the expectation with a sample average over N(l)

S(l) = 1

|N(l)|
∑

j ∈ N(l)

�g[x(j)]�+. (7)

This is computed as a combination of the responses of simple cells
in N(l), since (7) can be written as Han and Vasconcelos (2010)

S(l) = 1

|N(l)|
∑

j ∈ N(l)

ξ{PY |X[1|x(j)]} (8)

with

ξ(x) =
{

1
2 log x

1−x , x ≥ .5

0, x < .5.

Hence, a complex cell applies the non-linear transformation
ξ(x) to the responses of the afferent simple cells and pools the
transformed responses into the saliency measure S(l). The neigh-
borhood N(l) is thus denoted as the pooling neighborhood of the
complex cell. Like simple cells, the complex cell computation is

FIGURE 1 | Left: saliency is computed by a pair of layers of simple and
complex cells. In the simple cell layer, the visual stimulus is first subject to a
number of linear transformations, which are repeated at various image
scales, illustrated by chopped pyramids. In the example of the figure, the set
of transformations consist of four oriented filters Ti . Each simple cell
computes the optimal decision rule for the classification of the filter response
at one scale and location of a simple cell grid GS . A channel consists of all
retinotopic maps of simple cell response derived from a common
transformation (4 channels in the figure). A complex cell computes the
saliency score of (7), using a pooling neighborhood N(l) that spans locations
and scales. The retinotopic maps of complex cell response are in one to one
correspondence to those of simple cell response, but the grid GC of complex
cell locations is a subsampled replica of its simple cell counterpart. The
simple and complex cell computations can be implemented in two ways. In a

biologically plausible implementation, simple cells compute the posterior
probabilities of (3), while complex cells implement the pooling operator of (8).
In an artificial neural network implementation, simple cells implement the
parametric ReLU units of (11), while complex cells perform simple averaging.
Right: the top inset shows the histogram of responses of a bandpass filter to
the natural image on the left. The scale parameter α characterizes the spread
of the distribution and is large (small) for filters that match (do not match)
structures in the image, i.e., features that are “present” (“absent”). The plot
in the bottom shows the function of (11) for different values of αi . The
behavior of the parametric ReLU can change from the detection of feature
presence to the detection of feature absence, depending on the scales of the
target and background GGD distributions. The curve in red (blue) corresponds
to a feature present (absent) in the target but absent (present) in the null
class.
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replicated at a grid of locations GC (usually a subset of the sim-
ple cell grid GS) to produce a retinotopic channel of saliency
response. Each channel is associated with a common feature
transformation T , i.e., complex cells only combine the responses
of simple cells of common transformation T . As illustrated in the
left of Figure 1, the number of channels of complex cell response
is identical to that of simple cell response.

2.2. SALIENCY DETECTOR IMPLEMENTATIONS
The saliency measure of (5) can be implemented in three different
ways, which are of interest for different applications of the saliency
model.

2.2.1. Biologically plausible implementation
The saliency computations can be mapped into a network that
replicates the standard neurophysiological model of visual cor-
tex (Carandini et al., 2005). In biology, rather than the static
analysis of a single image, recognition is usually combined with
object tracking or some other dynamic visual process. In this case,
saliency is not strictly a feedforward computation. In particular,
the training sets Ri of (2), used to learn the GGD parameters
of a cell, are composed by responses of other cells, i.e., the tar-
get and background classes are defined by the lateral connections
of a simple cell. An implementation of object tracking, by con-
tinuously adaptive recognition of the objects to track, using this
type of mechanism is presented in Mahadevan and Vasconcelos
(2013). In this implementation, the lateral connections are orga-
nized in a center surround manner, defining (1) the target class
as the visual stimulus in a window containing the object to track
and (2) the background class as the stimulus in a surrounding
window. Under this type of implementation, a simple cell com-
putes the LLR g[x(l)] by combining (4) and (2) into the divisive
normalization operation

g[x(l)] = |x(l)|β
1
κ

∑
j ∈ R0

|x(j)|β + ν
− |x(l)|β

1
κ

∑
j ∈ R1

|x(j)|β + ν
+ T, (9)

characteristic of simple cell computations (Heeger, 1992;
Carandini et al., 1997, 2005). The LLR is then transformed

into the posterior probability of (3) by application of a sig-
moid transformation to the divisively normalized responses.
An illustration of the simple cell computations is given in
Figure 2A. Complex cells then implement the computations
of (8), as illustrated in Figure 2B. When equipped with these
units, the network of Figure 1 has a one to one mapping
with the standard neurophysiologic model of the visual cortex
(Carandini et al., 2005).

2.2.2. Neural network implementation
Neural networks are commonly used to solve the computer vision
problem of object recognition. In this setting, network parame-
ters are learned during a training stage, after which the network
operates in a feedforward manner. For these type of applications,
the GGD parameters of (4) can be learned from a training set,
using (2), and kept constant during the recognition process. This
allows the simplification of the saliency operations. Namely, by
combining (7) and (4) it follows that

S(l) = 1

N(l)

∑
j ∈ N(l)

�γ |x(j)|β + T�+ (10)

where γ =
(

1

α
β
0

− 1

α
β
1

)
, and T = log α1

α0
. This can again be

mapped to the two layer network of Figure 1, but simple cells now
simply rectify feature responses, according to

ψ(x) = �γ |x|β − T�+, (11)

while complex cells perform a simple average pooling operation.
The resulting network is similar to the stages of rectifier linear
units (ReLU) that have recently become popular in the deep learn-
ing literature (Nair and Hinton, 2010; Krizhevsky et al., 2012).
When compared to the ReLU computation, f (x) = �x�+, the
parametric rectifier of (11) replaces static rectification by an adap-
tive rectification, tuned to the scales αi of the feature distributions
under target and background hypotheses.

FIGURE 2 | Discriminant saliency computations. (A) Simple cell (S
unit). A unit of receptive field centered at location l computes a feature
response x(l). This is then rectified, differentially divisively normalized by
feature responses from areas R0 and R1, and fed to a sigmoid. The
responses from the two areas act as training sets for the binary
classification of x(l). More precisely, responses in R0 (R1) act as
training examples for the negative (positive) class. The output g[x(l)] of
the differential divisive normalization operator is the log-likelihood ration

for the classification of x(l) with respect to the two classes (under the
assumption of GGD statistics), as in (9). The sigmoid finally transforms
this ratio into the posterior probability of the positive class, as in (3).
(B) Complex cell (C unit). The bottom plane symbolizes the output of a
layer of S-units, the top one the output of a layer of C-units. S-unit
responses within a neighborhood N(l) are passed through non-linearity
ξ (x) and pooled additively, to produce the response of a C unit. This
implements the saliency measure of (8).
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This adaptation is illustrated in the right side of Figure 1.
When α1 = α0, target and null distributions are identical and
ψ(x) = 0 for all x. Hence, non-informative features for target
detection are totally inhibited. When α1 > α0, the target distri-
bution has heavier tails than the null distribution, i.e., the feature
is present in the target. In this case (blue curve), the rectifier
enhances large responses and inhibits small ones, acting as a
detector of feature presence. Conversely, the null hypothesis has
heavier tails when α1 < α0, i.e., when the feature is absent from
the target. In this case (red dashed curve), the rectifier enhances
small responses and inhibits large ones, acting as a detector of
feature absence. In summary, the rectification introduced by the
simple cells of (11) varies with a measure of discrimination of
the feature X, based on the parameters γ and T. In result, the
cell responses adapt to the feature distributions under the two
hypotheses, allowing simple cells to have very diverse responses
for different features. This is beyond the reach of the conventional
ReLU rectifier. The adaptive behavior of ψ(x) is also reminis-
cent of optimal rules for image denoising (Chang et al., 2000).
Like these rules, it thresholds the feature response, exhibiting a
dead-zone (region of zero output) which depends on the feature
type. Note that this results from (8), which is the Bayes decision
rule for classification of the response x(l) into target and back-
ground. Hence, ψ(x) can be seen as an optimal feature denoising
operator for the detection of targets embedded in clutter. The
dead-zone depends on the relative scales of target and background
distribution, according to

|x|β ≤ T/γ when α1 > α0

|x|β ≥ T/γ when α1 < α0.
(12)

2.2.3. Algorithmic implementation
It is also possible to compute the discriminant saliency measure
with an algorithm that has little resemblance to any biological
computation but provides insight into the saliency score. This
follows from rewriting (5) as

S(l) =
1∑

i = 0

EX(l)|Y(l)
(�g(X)�+|i) PY(l)(i)

= EX(l)|Y(l)
(�g(X)�+|1) PY(l)(1) ∝ EX(l)|Y(l)

(
g(X)|1)

=
∫

N(l)
PX|Y (x|1) log

PX|Y (x|1)

PX|Y (x|0)
dx,

where we have used the fact that �g(x(l))�+ = 0 whenever
Y(l) = 0 and g(x(l)) ≥ 0 otherwise. Hence, the saliency score can
be interpreted as the computation, over the neighborhood N(l),
of the Kullback-Leibler (KL) divergence between the probability
distributions of the feature responses under the target and back-
ground distributions. Since the KL divergence is a well-known
measure of distance between probability distributions, this con-
firms the discriminant nature of the saliency measure. Using (4),
the KL divergence can be written as

S(l) ∝ EX(l)|Y(l)[|x|β |1]
(

1

α
β
0

− 1

α
β
1

)
+ T (13)

∝ γ

β
α
β
1 (l) + T, (14)

where αβ1 (l) is the scale parameter of a GGD distribution with the
responses observed in N(l). This enables a very simple computa-
tion of the saliency measure, using the following procedure.

(1) From the feature responses xi(j) in the neighborhood N(l)

estimate αβ1 (l), using (2).

(2) Use (14) with αβ1 (l) and the model parameters αβi learned
from the training samples Ri to compute the saliency
score S(l).

2.2.4. Discussion on different implementations
The three implementations above are equivalent, in the sense that
they produce similar results on a given saliency task. They are suit-
able for different applications of the saliency measure of (5). In
general, any model of biological computation has several imple-
mentations. For example, the convolution y(l) of a visual stimulus
x(l) with a linear filter h(l) can be computed in at least two ways:
(1) the classical convolution formula

y(l) =
∑

k

x(k)h(k − l) (15)

or (2) the response to the stimulus x(l) of a convolutional neu-
ral network layer (Fukushima, 1980; LeCun et al., 1998) of linear
units with identical weights, derived from the filter h(l). In this
case, each network unit computes the output y(l) for a particular
value of l. We refer to the first as the mathematical implementa-
tion and to the second as the biological implementation. While
any biologically plausible network has an equivalent mathemati-
cal implementation, it is generally not true that all mathematical
formulas can be implemented with biological circuits. Even when
this is possible, the implementation may occur at different levels
of abstraction. In general, an algorithm is considered biologically
plausible if it can be mapped to a realistic model of neural com-
putations (mapping from neuron stimuli to responses). This does
not mean that it actually simulates neurons at the molecular level.
It should, however, be able to predict the behavior of the neuron
in neuroscience experiments.

In the discussion above, the algorithmic implementation of
Section 2.2.3 is a mathematical implementation of the proposed
saliency measure. It does not explicitly define units or neurons
and is most suitable for the implementation of the measure as
a computer vision algorithm, in a standard sequential proces-
sor. On the other hand, because it does not make explicit the
input-output relationship of any particular neuron, it is not of
great interest as a model of neuroscience. The biologically plausi-
ble implementation of Section 2.2.1 has the reverse role. Because
it is fully compliant with the standard neurophysiological model
of the visual cortex (Carandini et al., 2005), it predicts a large
set of non-linear neuron behaviors which this model has been
documented to capture (Carandini and Heeger, 2011). It could,
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thus, be used to study the role of these behaviors in object recog-
nition. On the other hand, because it explicitly implements the
computations of each neuron, its implementation on a sequential
processor is much slower than the mathematical implementation
of Section 2.2.3. Hence, it makes little sense to adopt it if the goal
is simply to produce an efficient computer vision system. Finally,
the neural network implementation of Section 2.2.2 is somewhere
in between. It is a more abstract implementation than that of
Section 2.2.1, in the sense that it does not explicitly include oper-
ations like divisive normalization. This makes it faster to compute
and establishes a connection to recent models in the deep learn-
ing literature (Krizhevsky et al., 2012), which have been shown
to achieve impressive object recognition results. These models
can also be efficiently implemented in a GPU computer archi-
tecture, but are much slower on a traditional processor. Since
this implementation achieves the best trade-off between fidelity
to the neural computations and speed, we adopt it in the remain-
der of the paper. In particular, a CPU-based implementation of
the neural network of Section 2.2.2 was used in all experiments of
Section 4.

2.3. HIERARCHICAL DISCRIMINANT SALIENCY NETWORKS
A hierarchical discriminant saliency network (HDSN) is a neural
network whose layers are implemented by the saliency detector of
Figure 1.

2.3.1. HDSN architecture
The architecture of the HDSN is illustrated in Figure 3, for a two
layer network. In general, a HDSN has M layers. As in Figure 1,
layer m has two sub-layers: S(m) of S units (simple cells) and C(m)

of C units (complex cells). S-units are located in a coordinate grid

G(m)
S , C-units in a coordinate grid G(m)

C . Each sub-layer is orga-
nized into C channels. Channel c is based on the convolution of

the layer input with a template, T (m)
c , shared by all its units. The

processing of each channel is repeated at R(m) image resolutions.
The network of Figure 3, has C(1) = 4 channels in layer 1 and
C(2) = N in layer 2.

Let y(0) be the network input, and y(m−1)
c the output of

cth channel of layer m − 1. At layer m, y(m−1) is first contrast
normalized

yc(l) = y(m − 1)
c (l)∑

j ∈ Z(l)

∑
i y(m − 1)

i (j)
(16)

where Z(l) is a window, centered at l, with the size of template

T (m)
c . The normalized input is then processed by the sub-layer of

S-units, which first convolves it with the filters T (m)
c . This pro-

duces feature responses x(m)
c (l), which are then sampled at S-unit

locations G(m)
s , and rectified by the parametric ReLU of (11),

ψ (m)
c (x) =

⌊
γ (m)

c |x|β − T(m)
c ,

⌋
+ , (17)

with parameters

γ (m)
c =

⎛
⎜⎝ 1(

α
(m)
c,0

)β − 1(
α

(m)
c,1

)β
⎞
⎟⎠ T(m)

c = log
α

(m)
c,1

α
(m)
c,0

. (18)

The rectified filter responses are then fed to the sub-layer of C-
units. Each C-unit computes the saliency score of (7) by simple
averaging over its pooling window, i.e.,

y(m)
c (l′) = S(m)

c (l′) = 1

|N(m)(l′)|
∑

l∈N(m)(l′)
ψ (m)

c

(
x(m)

c (l)
)

(19)

FIGURE 3 | Left: HDSN with two layers. Each layer consists of a DSN, as in
Figure 1. Layer i contains a sub-layer of simple (S(i)) and a sub-layer of
complex (C (i)) units. The network has 4 channels in layer 1 and N in layer 2.
Channel c is obtained by convolving the input of a layer with a template Tc , at
several resolutions. Templates T (1)

c of layer 1 are Gabor filters, templates T (2)
c

of layer 2 are learned during training. Center: Gabor channels x (1)
c derived

from the input image, corresponding saliency channels y (1)
c at the output of

the first network layer, and example saliency templates T (2)
c learned by the

second layer. Right: most discriminant template learned for each of four
classes of Caltech101 (an example image is also shown for each class). Note
that each template is composed of four image patches, derived from the four
channels of the image representation in the first network layer.
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The cth channel of this representation is the saliency map with

respect to template T (m)
c and the cth channel of the output of

layer m. The locations l′ are defined by the C-unit grid G(m)
C . The

pooling neighborhood N(l′) is usually smaller than the output of
the afferent S sub-layer. Hence, both S and C-units have limited
spatial support. However, N(m)(l′) can be location adaptive, i.e.,
depend on l′.

2.3.2. Learning
The training of a HDSN consists of learning the templates T (m)

c

and the GGD scales α(m)
c,0 , α

(m)
c,1 per layer m. Many approaches

are possible to learn the templates T (2)
c , including the back-

propagation algorithm (LeCun et al., 1998), restricted Boltzmann
machines (Hinton et al., 2006), clustering (Coates et al., 2011),
multi-level sparse decompositions (Kavukcuoglu et al., 2010),
etc. In this work, we adopt the simple procedure proposed for
training the HMAX network in Serre et al. (2007); Mutch and

Lowe (2008), where the templates T (m)
c of layer m are randomly

sampled patches from the responses y(m−1)
c of layer m − 1, nor-

malized to zero mean and unit norm. Given T (m)
c , the network is

exposed to images from class i ∈ {0, 1}, and training samples R(m)
c,i

collected. These consist of the responses x(m)
c (l) across locations l

and training images from class i. The scale parameters are then
computed with (2).

2.3.3. Object recognition
The HDSN is a hierarchical feature extractor, which maps the
input image into a vector of responses of layer C(M). For
object recognition, this vector is fed to a linear classifier. In our
implementation this is a support vector machine (SVM). The
network topology is characterized by the parameters �(m) =
{R(m),G(m)

S ,GC
(m),T (m),N(m)},m ∈ {1, . . . ,M}. As is usual in

the hierarchical network literature, a good trade-off between
object selectivity and invariance can be achieved by using (1)

sparser grids G(m)
S ,GC

(m), (2) filters T (m) of larger spatial sup-
port, and (3) larger pooling neighborhoods N(m), as m increases.
This results in higher layer templates that are more selective
for the target objects than those of the lower layers, with-
out compromise of invariance. Since the selectivity-invariance
trade-off of deep networks has been demonstrated by many
prior works (Riesenhuber and Poggio, 1999; Serre et al., 2007;

Krizhevsky et al., 2012), we do not discuss it here. In fact, the
goal of this work was not to test the benefits of deep learning
per se, which have now been amply demonstrated in the literature,
but to investigate the benefits of augmenting the network with
the saliency computations. Since, as we will see in the next sec-
tion, many of the computer vision methods for object recognition
can be mapped into two-layer networks, our study was limited to
the network of Figure 3. This also had the advantage of enabling
training from much smaller training sets.

In our implementation, S(1) units use the 11 × 11 Gabor filters
proposed in Mutch and Lowe (2008),

T (1)
c (x, y) = exp

(
−X2 + γ 2Y2

2σ 2

)
cos

(
2π

λ
x

)
(20)

where X = x cos θc − y sin θc, Y = x sin θc + y cos θc, θc ∈
{0, π/4, π/2, 3π/4}, and γ , σ , and λ are set to 0.3, 4.5, and 5.6,
respectively. This makes the first layer a detector of characteristic

edges of the target. The training samples R(1)
c,i for learning the

scale parameters α(1)
c,i are the set of Gabor responses x(1)

c to
images of class i over the entire channel c. On the other hand,

the templates of S(2), T (2)
c = {T (2)

c,1 , . . . ,T
(2)

c,C(1)}, span the C(1)

channels of the first layer, and are learned by random sampling,
as discussed above. Since these templates are saliency patterns
produced by layer 1 in response to the target, they are usually
more complex features. The different complexity of the templates
of the two layers warrants different pooling neighborhoods for
C-units. Since simple features are homogeneous, layer 1 relies on
a fixed neighborhood N(1). On the other hand, to accommodate
the diversity of its complex features, layer 2 uses template

specific pooling neighborhoods N(2)
c . Templates T (2) have

dimension n × n × 4, for n ∈ {4, 8, 12, 16}, and are normalized
to zero mean and unit norm (over the 4 channels). Pooling
neighborhoods have area S ∈ {10, 20, 30%} of the size of layer 2
channels, and span d ∈ {3, 5, 7} scales. Like the templates, they
are sampled randomly. These neighborhoods are also used to

collect the training samples R(2)
c,i for learning the scale parameters

associated with each of the templates. The network configuration
is summarized in Table 1.

Figure 3 illustrates the computations of the HDSN. It shows an

image and the corresponding responses x(1)
c of the layer 1 Gabor

Table 1 | Configuration of the network used in all our experiments.

R(m) G
(m)
S

GC
(m) T(m) N(m)

m = 1 10 resolutions 1 × 1 × 1 3 × 3 × 1 Gabor filters of (20) 5 × 5 × 2 window

r ∈ {2i/4|i = 0, . . . , 9} subsampling

m = 2 same 1 × 1 × 1 Location and scale Randomly selected S% of image area

from which template n × n × 4 templates, and depth d in scale,

is originally sampled n ∈ {4, 8, 12, 16}, where S ∈ {10, 20, 30},
with zero mean d ∈ {3, 5, 7}
and unit norm

Unless otherwise noted, n × m × l means a spatial step of n × m and a step of l across scales.
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filters, and y(1)
c of the layer 1 C-units. Note that, due to the class

adaptive rectification of (17), the saliency responses y(1)
c amplify

the filter responses x(1)
c of certain channels and inhibit the remain-

ing. This allows the layer to produce a response that is more
finely tuned to the discriminant features of the target class (in this
example, the Caltech class “accordion”). Or, in other words, the
layer highlights the features that are most distinctive of the tar-
get class. This, in turn, allows layer 2 to learn templates that are
more discriminant of the target class than would be possible in
the absence of the saliency computation. Note how the example
templates T (2) are selective for some of the feature channels. The
inset on right of the figure presents the most discriminant tem-
plate learned for four classes of Caltech101 (an example image
of each of the classes is also shown). Note how the network has
learned templates that are highly selective for the target objects.
These templates are complex features (Vidal-Naquet and Ullman,
2003; Gao and Vasconcelos, 2005), which capture the spatial
configuration of low-level features in target objects, resembling
the receptive fields of cells in area IT (Riesenhuber and Poggio,
1999; Brincat and Connor, 2004; Yamane et al., 2008). Overall,
while layer 1 processes edges, layer 2 captures shape information.
When combined with the ability of the parametric ReLU recti-
fiers of (17) to behave as detectors of both feature presence and
absence, this hierarchical learning of increasingly more selective
templates enables the HDSN to compute saliency in challeng-
ing scenes. This is illustrated in Figure 4, using the pandaCam
dataset, where background textures can be much more complex

than the target object (panda bear). To be successful, the net-
work must learn that the distinctive panda property is the absence
of many of the features present in the background. The figure
compares saliency maps produced by a HDSN with a single-layer
(center column) and two layers (right column). Note how the lat-
ter produces saliency maps with less false positives and a much
more precise localization of the target bears. The combination of
(1) hierarchical learning of discriminant templates, and (2) detec-
tion of feature absence by parametric ReLUs, is critical for the
network’s effectiveness as a saliency detector.

3. RELATIONSHIPS TO RECOGNITION MODELS
In this section we compare HDSNs to previous object recognition
models. We start by considering saliency models, then neural net-
works proposed for object recognition, and finally models from
the computer vision literature.

3.1. SALIENCY MODELS
Many stimulus driven, bottom-up, saliency models have been
proposed in the literature. They implement center-surround
operations (Itti et al., 1998; Gao and Vasconcelos, 2009),
frequency analysis (Hou and Zhang, 2007; Guo et al.,
2008), or detect stimuli with specific properties, e.g., low-
probability (Rosenholtz, 1999; Bruce and Tsotsos, 2006; Zhang
et al., 2008), high entropy (Kadir and Brady, 2001), or high
complexity (Sebe and Lew, 2003). These models cannot account
for the well-known fact that, beyond the stimulus, saliency is

FIGURE 4 | Localization of panda bears in a complex environment. Left:
bear images. Note the highly variable pose of the bears and the strongly
textured backgrounds. Center: saliency maps produced by a single layer

HSDN. Right: saliency maps produced by a two-layer HDSN. The ability of
the second network layer to learn discriminant saliency patterns reduces the
number of false positives and enables significantly superior target localization.
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influenced by the task to be performed. For example, knowl-
edge of target features increases the efficiency of visual search
for a target among distractors (Tsotsos, 1991; Wolfe, 1998). This
top-down component of saliency is classically modeled by modu-
lating features responses (Treisman, 1985; Wolfe, 1994; Desimone
and Duncan, 1995; Navalpakkam and Itti, 2007), i.e., global fea-
ture selection. This, however limits the ability to localize targets,
since the selected filters respond to stimuli across the visual
field. More recent top-down saliency models estimate distribu-
tions of feature response to target and background, and use them
to derive optimal decision rules. These rules modulate feature
responses spatially, according to the stimuli at different loca-
tions. A top-down saliency detector of this type is that of Elazary
and Itti (2010). It differs from discriminant saliency through two
simplifications: (1) assumption of Gaussian instead of general-
ized Gaussian responses (β = 2), and (2) use of the target log
likelihood

S′(l) = log P
X(1)

c |Y (x(1)
c (l)|1) (21)

instead of (5), as saliency criterion (Elazary and Itti, 2010). In
terms of the biological implementation discussed above, this
corresponds to eliminating (1) C units, (2) the sigmoid σ (x),
and (3) the top divisive normalization branch (see Figure 2A)
of S units. We refer to such S units as target likelihood
(TL) units, and the resulting network as likelihood saliency
network (LSN).

3.2. NEURAL NETWORKS FOR RECOGNITION
HDSNs have commonalities with many neural network models
proposed for object recognition.

3.2.1. HMAX
Like the HDSN, the HMAX network follows the general architec-
ture of Figure 3 (Serre et al., 2007). S(1) units are Gabor filters,
whose responses are pooled by C(1) units, using a maximum
operator

y(1)
c (l) = max

j ∈ N(1)(l)
x(1)

c (j), (22)

where we again denote filter responses by x(m)
c (l) and pooling win-

dow by N(m). The S(2) sub-layer is a radial basis function (RBF)
network with outputs

s(2)
c (l) = exp

(
−β

∑
i

||y(1)
i (l) − T (2)

c,i ||2
)

(23)

where β determines the sharpness of the RBF-unit tuning and

T (2)
c is a template. Similarly to the proposed implementation of

the HDSN, these templates are randomly selected during train-

ing, and have as many components T (2)
c,i as the number of layer 1

channels. C(2) units are again max-pooling operators

y(2)
c (l) = max

j ∈ M(2)
s(2)
c (j), (24)

where M(2) is the whole visual field. A number of improvements
to the HMAX architecture have been proposed in Mutch and
Lowe (2008): a lateral inhibition that emulates divisive normaliza-
tion, the restriction of M(2) to template-specific neighborhoods
[to increase localization of C(2) units], a single set of templates
shared by all object classes, and a support vector-machine (SVM)-
based feature selection mechanism to select the most discriminant
subset.

3.2.2. Convolutional neural networks
Both the HDSN and the HMAX networks are members of the
broader family of convolutional neural networks. These are again
networks with the hierarchical structure of Figure 3, which date
back to Fukushima’s neocognitron (Fukushima, 1980). While
early models lacked an explicit optimality criterion for train-
ing, convolutional networks trained by backpropagation became
popular in the 1980s (LeCun et al., 1998). Classical models had
no C units and their S units were composed uniquely of fil-
tering and the sigmoid of (3). Recent extensions introduced S
and C-like units per network layer (Pinto et al., 2008; Jarrett
et al., 2009). While many variations are possible, modern S-units
tend to include filtering, rectification, and contrast normaliza-
tion. C-units then pool their responses. These extensions have
significantly improved performance, sometimes producing stag-
gering improvements. For example, Jarrett et al. (2009) reports
that simply rectifying the output of each convolutional network
unit drastically improves recognition accuracy. In fact, a network
with random filters, but whose S-units include rectification and
normalization, performs close to a network with extensively opti-
mized filters. More recently, it has been shown that replacing
the sigmoid of (3) by the ReLU nonlinearity f (x) = �x�+ can
significantly speed-up network training (Krizhevsky et al., 2012).

In this work, we consider in greater detail the network of Jarrett
et al. (2009), which implements the most sophisticated S-units.

The input of layer m is first convolved with a set of filters T (m)
c ,

producing feature responses x(m)
c . These are then passed through a

squashing non-linearity, absolute value rectification, subtractive,
and divisive normalization, according to

a(m)
c (l) = |gc tanh x(m)

c (l)| (25)

v(m)
c (l) = a(m)

c (l)−
C∑

c = 1

∑
j ∈ M(l)

w(j)a(m)
c (j)

∑
j ∈ M(l)

w(j) = 1/C (26)

u(m)
c (l) = v(m)

c (l)

max

(
ε,
∑C

c = 1

∑
j ∈ M(l) w(j)

(
v(m)

c

)2
(j)

) , (27)

where M(l) is a 9 × 9 window. The normalized responses are
finally fed to a layer of C-units, which implement spatial pooling

y(m)
c (l) =

∑
j∈N(l)

u(m)
c (j) (28)

and subsampling. It is shown that unsupervised learning of the

filters T (m)
c is marginally better than adopting a random filter

set, and relatively small gains result from global filter learning.

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 109 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Han and Vasconcelos Hierarchical discriminant saliency networks

More recently, Krizhevsky et al. (2012) have shown that state of
the art results on large scale recognition problems can be obtained
with a deep network, whose layers are slightly simpler than those
of Jarrett et al. (2009). This is a network of five convolutional
and three fully connected layers. Its convolutional stages consist
of a sub-layer of S-units, which implement a sequence of filtering,
divisive normalization with (27) and ReLU rectification, and a
sub-layer of C-units, which implement the max pooling operation

of (22). The filters T (m)
c are learned by back-propagation.

3.3. COMPUTER VISION MODELS
Many object recognition methods have been proposed in the
computer vision literature. Over the last decade, there has been
a convergence to a canonical architecture, consisting of three
stages: descriptor extraction, descriptor encoding, and classifi-
cation. While the classification stage is usually a linear SVM,
many of the recent object recognition methods differ on the
details of the first two stages (Chatfield et al., 2011). We next
show that this architecture can be mapped to the network of
Figure 3.

3.3.1. Canonical recognition architecture
Figure 5 shows the two-stage canonical architecture for object
recognition in computer vision. The first stage transforms an
image into a collection of descriptors, usually denoted a bag-of-
features. The descriptors y(1)(l) are calculated at image locations
l, e.g., per pixel, in a regular pixel grid (dense sampling), or
at keypoint locations (Lowe, 1999). We assume dense sampling,
which produces best results (Zhang et al., 2007) and is more
widely used. Descriptors are high-dimensional vectors, obtained
by application of spatially localized operators at each image loca-

tion. If each descriptor dimension y(1)
c is used to define a channel

of this representation, descriptor channels can be interpreted
as the channels of C(1) output in Figure 3. The second stage
computes an encoding of the descriptors extracted by the first.

This is based on a set of descriptor templates, T (2)
c , learned

from a training dataset. Descriptor templates can be the com-
ponents of a model of the descriptor probability distribution,
e.g., a Gaussian mixture model (GMM), kernel density, vector
quantizer, or RBF network (Duda et al., 2001) or the basis func-
tions of a sparse representation of descriptor space. When the
former are used, we denote the encoding as probabilistic, while
the term sparse encoding is used for the latter. Examples of prob-
abilistic encodings include the minimum probability of error
(MPE) architecture of Vasconcelos and Lippman (1997, 2000);
Vasconcelos (2004a); Carneiro et al. (2007), the spatial pyramid
matching kernel (SPMK) of Lazebnik et al. (2006), the naive-
Bayes nearest neighbor (NBNN) classifier of Boiman et al. (2008),
the hierarchical Gaussianization (HGMM) of Zhou et al. (2009),
and many variants on these methods. Sparse encodings include,
among others, the sparse SPMK method of Yang et al. (2009)
and the locality-constrained linear (LLC) encoding of Wang et al.
(2010).

The most popular encoding is probabilistic, namely a GMM
with templates learned by either k-means or the expectation-
maximization algorithm. In this case, the descriptor encoding
reduces to computing a measure of descriptor-template similarity

s(y(1)(l),T (2)
c ) and assigning the descriptor the closest template.

It is also possible to rely on a soft assignment, where a descriptor
is assigned to multiple templates with different weights. This is,
for example, the case of sparse encodings. In all cases, the map

of descriptor assignments to the cth template, T (2)
c , is the cth

channel of the stage 2 representation. Assignment channels are
then pooled spatially, to produce the final image representation.

FIGURE 5 | Canonical architecture implemented by various popular

object recognition methods. Images are represented by sets of
descriptors. A set of representative descriptors {T (2)

c } is learned from an
image training set. The descriptors y (1)(l) extracted from the image to classify
are then encoded, with respect to this set of representatives. The encoding

consists of assigning each descriptor to a subset of the representatives,
using a similarity function s

(
y (1)(l),T (2)

c

)
. This could be a probabilistic

function, e.g., probability under a Gaussian mixture model, or a sparse
encoding. The assignments are finally pooled spatially to produce assignment
histograms, which are fed to a classifier, e.g., a support vector machine.
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For hard assignments, this is equivalent to representing the
input image as a histogram of stage 2 assignments. The pooling
operation can be performed over the entire image, sub-areas, or
both. We next discuss how different computer vision methods
map into this architecture.

3.3.2. Stage 1: descriptors
Popular descriptors, e.g., SIFT (Lowe, 1999) or HoG (Dalal and
Triggs, 2005), are measures of orientation dominance. While we
discuss SIFT in detail, a similar analysis applies to others. The
SIFT descriptor y ∈ R

128 is a set of 8-bin histograms of ori-
entation response computed from intensity gradients. Location
l contributes to histogram bin k with ak(l) = r(l)g(l)bk[θ(l)],
where r(l), θ(l) are the gradient magnitude and orientation at l,
g(l) a Gaussian that penalizes locations farther from the descrip-
tor center, and bk(θ) a trilinear interpolator, based on the distance
between θ and the orientation of bin k. The kth histogram
entry is

hk =
∑
l ∈ B

ak(l), (29)

where B is a 4 × 4 pixel cell. The descriptor concatenates
histograms of 4 × 4 cells into a 128-dimensional vec-
tor, which is normalized, fed to a saturating nonlinearity
τ (x) = max (x, 0.2) and normalized again to unit length.
Using superscripts q ∈ {1, . . . , 16} for cells, and subscripts
k ∈ {1, . . . , 8} for orientation bins, this is the sequence of
computations

h
q
k = τ

[
h

q
k∑

q,k h
q
k

]
= τ

[∑
l ∈ Bq

ak(l)∑
q,k

∑
l ∈ Bq ak(l)

]
(30)

s
q
k = h

q
k∑

q,k h
q
k

2
y = (s1, . . . , s16)T . (31)

Note that (31) is a combination of divisive normalization (of
ak(l) by responses in all cells Bq), average pooling, and squash-
ing non-linearity, similar to the sequence of (27) and (28). The
main difference is the application of the non-linearity after pool-
ing vs. after filtering, as in (25). (31) can be seen as pre-processing
for stage 2, contrast normalizing stage 1 responses. This is identi-
cal to (16), the normalization of HDSN layer inputs. In summary,
the SIFT computations can be mapped to a network layer similar
to those discussed above.

In fact, the descriptor can be interpreted as a saliency measure,

if ak(l) is replaced by the response magnitude |x(1)
k (l)| of a Gabor

filter with the kth orientation, a conceptually equivalent measure
of oriented image energy. Defining

α =
∑
q,j

∑
l ∈ Bq

|x(1)
j (l)| =

∑
q,l ∈ Bq

|x(1)
k (l)| +

∑
j 	= k

∑
q,l ∈ Bq

|x(1)
j (l)|

=
∑

q,l ∈ Bq

|x(1)
k (l)| + ν

(31) reduces to h
q
k = τ [εq

k ] where

ε
q
k =

∑
l ∈ Bq

|x(1)
k (l)|
α

(32)

∝ −
∑
l ∈ Bq

log P
X(1)

k
(x(1)

k (l);α, 1) (33)

≈ −
∫

Bq
PXk (x;αq, 1) log PXk (x;α, 1)dx (34)

with PX(x;α, 1) as given in (1), and αq = ∑
l∈Bq |x(1)

k (l)|. Hence,

up to constants, ε
q
k is the cross-entropy between the responses of

filter X(1)
k within cell Bq and across the support of the descriptor.

Assuming that the distributions are identical, this is the response
entropy, a common saliency measure (Rosenholtz, 1999; Kadir
and Brady, 2001; Bruce and Tsotsos, 2006; Zhang et al., 2008) that
equates salient to rare (low-probability) events. Hence, SIFT can
be interpreted as a saliency measure, which identifies as salient
stimuli of rare orientation within a local image neighborhood.

3.3.3. Stage 2: descriptor assignments
Under this interpretation, the templates T (2)

c are saliency
templates1. For probabilistic models, the descriptor-to-template
assignment of stage 2 is always a variation on layer 2 of the

HMAX network. The likelihoods s(2)
c (l) of the descriptor y(1)(l)

under the components of a Gaussian mixture whose means are

the templates T (2)
c , c ∈ {1, . . . ,N} are first computed with (23).

These likelihoods are then mapped into posterior probabilities of
component given descriptor, by a divisive normalization across
channels

p(2)
c (l) = s(2)

c (l)∑N
c = 1 s(2)

c (l)
. (35)

The RBF precision parameter β of (23) controls the softness of the
assignments. When β → 0 the mixture model becomes a vector

quantizer (Vasconcelos, 2004b) and p(2)
c (l) = 1 for the template

closest to y(1)(l), and zero for all others, i.e., assignments are hard.
When β > 0 descriptors are assigned to multiple components,

according to the posteriors p(2)
c (l), i.e., assignments are soft. Some

methods, e.g., MPE, HGMM, or NN, learn descriptor templates
per object class and compute the posterior class probability

PY |X(c|y(1)(l)) =
∑
j ∈ Ic

p(2)
j (l) (36)

where Ic is the set of indices of templates from class c. In summary,
for probabilistic models, the second stage of the canonical archi-
tecture consists of the RBF network of HMAX plus the divisive
normalization of (35), and can be complemented by (36). Overall,

1This is a terminology for descriptor templates alternative to visual
words (Sivic and Zisserman, 2003; Csurka et al., 2004), textons (Leung and
Malik, 2001), visemes (Ezzat and Poggio, 2000), or others used in the litera-
ture.
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there are three types of layer 2 units: HMAX uses the likelihood
units (LU) of (23), while the remaining approaches rely on the
posterior units (PU) of (35), or the class-posterior units (CPU)
of (36).

For sparse models, the assignments p(2)
c (l) are obtained by

minimizing a sparseness inducing assignment cost. For example,
the assignments of SPMK are the solution of

p(2)(l) = arg min
p

||y(1)(l) − T(2)p||2 + λ||p||1 (37)

where T(2) is a dictionary with templates T (2)
c as columns, ||p||1

the �1 norm of p, and λ a regularization parameter. This produces
a soft assignment, of sparsity (number of non-zero entries) con-
trolled by λ. While sparse assignments can improve recognition
performance, they have increased computational cost, since the
optimization of (37) has to be repeated for each descriptor of the
image to classify. This is frequently done with greedy optimization
by matching pursuits (Mallat and Zhang, 1993), which involve
multiple iterations over all templates in T(2). We denote the units
of sparse representation as projection pursuit (PP) units.

For both probabilistic and sparse models, the final step of stage
2 is an assignment histogram, computed by either average

y(2)
c (l) = 1

|N(2)(l)|
∑

m∈N(2)(l)

p(2)
c (m), (38)

or maximum

y(2)
c (l) = max

m ∈ N(2)(l)
p(2)

c (m), (39)

pooling. The neighborhood N(2)(l) can be the entire image, in
which case there are as many pooling units as descriptor tem-
plates, i.e., N, but is usually repeated for a number of subregions,
using the pyramid structure introduced by SPMK and shown in
Figure 5. This is usually a three-layer pyramid, containing the full
image at level 0, and its partition into 2 × 2, and 4 × 4 equal sized

cells at levels 1 and 2, respectively. In this case, there are a total of
21N pooling units.

3.4. DISCUSSION
Table 2 summarizes the operations of various popular recogni-
tion methods. The table is organized by the type of saliency (none,
bottom-up, or top-down) implemented by each of the methods.
It should be noted that the template learning procedures are not
necessarily tied to the network architecture. For example, HMAX
could use k-means, and SPMK could use codebooks of ran-
domly collected examples. In fact, many alternative methods have
been proposed for codebook learning (Sivic and Zisserman, 2003;
Csurka et al., 2004; Fei-Fei and Perona, 2005; Winn et al., 2005;
Moosmann et al., 2007) or sparse representation (Mairal et al.,
2008; Wang et al., 2010). It is, nevertheless, clear that the differ-
ent methods perform similar sequences of operations. In all cases,
these operations can be mapped into the network architecture of
Figure 1 and implement at least some aspects of the standard neu-
rophysiologic model (Carandini et al., 2005). However, the basic
operations can differ in substantive details, such as the types of
non-linearities, the order in which they are applied, etc. Since
any combinations are in principle possible, the space of possible
object recognition networks is combinatorial. This is amplified
by the combinatorial possibilities for the number of parameters
of any particular network configuration, e.g., receptive field sizes,
subsampling factors, size of pooling regions, normalizing connec-
tions, etc. In result, it is nearly impossible to search for the best
configuration for any particular recognition problem.

From a theoretical point of view, the main benefit of the HDSN
is the statistical interpretation (e.g., computation of target proba-
bilities) and functional justification (e.g., saliency detection) that
it provides for all network computations. This results in clear
guidelines for the sequence of network operations to be imple-
mented, namely the S and C-units of Figure 2, clear semantics for
normalizing connections (training feature responses under the
target and background classes), and an abstract characterization
of the unit computations, as in the algorithmic implementation
of Section 2.2.3. It is thus possible to design network architectures

Table 2 | Mapping of various popular recognition algorithms to the canonical architecture of Figure 5.

Method Stage 1 Stage 2

Units Saliency Templates Units Assignment Pooling

HMAX Filter responses – Random LU Soft Max

MPE Filter responses – GMM CPU Soft Sum

NBNN SIFT Bottom-up Training set CPU Hard Sum

SPMK SIFT Bottom-up Codebook PU Hard Sum

HGMM SIFT Bottom-up GMM CPU soft sum

Sparse SPMK SIFT Bottom-up Sparse dictionary PP Soft Max

LSN SL Top-down –

HDSN DS Top-down Random DS – Sum

HMAX: (Serre et al., 2007), MPE: (Carneiro et al., 2007), NBNN: (Boiman et al., 2008), SPMK: (Lazebnik et al., 2006), HGMM: (Zhou et al., 2009), sparse SPMK: (Yang

et al., 2009), LSN: (Elazary and Itti, 2010).

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 109 | 13

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Han and Vasconcelos Hierarchical discriminant saliency networks

for specific tasks, without the need for exhaustive search. In fact,
the statistical nature of the underlying computations could be
used to expand network functionality, e.g., by resorting to model
adaptation techniques (Saenko et al., 2010; Dixit et al., 2011;
Kulis et al., 2011) in order to reduce training set sizes, or belief
propagation to enable more sophisticated forms of statistical
inference, such as Markov or conditional random fields (Geman
and Geman, 1984; He et al., 2004). For object recognition, some
form of model adaptation is already enabled by the divisive nor-
malization connections of Figure 2A) or, equivalently, the scale
parameters αi of the target and background distributions. As
mentioned in Section 2.2.2, these enable the interpretation of S-
units as the parametric rectification units ψ(x) of (11), which
support a much richer set of network behaviors (e.g., sensitivity to
feature absence) than commonly used non-linearities (such as the
sigmoid or ReLU operations). By changing its scale parameters,
the network can adapt to new recognition tasks without having to
relearn new filters. This adaptation is also quite simple: it reduces
to collecting samples of filter response to the target classes of
interest and using (2) to estimate the scales αi. None of the other
networks (or even computer vision algorithms) discussed above
has this property.

Of all the recognition architectures discussed above, the HDSN
is also unique in its explicit modeling of discriminant saliency,
based on statistical modeling of the target and background dis-
tributions. In most other models, the saliency computation does
not even involve the notions of target and background class,
and the GGD scale is simply estimated from a neighborhood of
the image to classify, as in (27) or (32). This strictly bottom-
up definition of saliency cannot be tuned for recognition. On
the other hand, the saliency maps of the HDSN identify fea-
ture responses discriminant for target detection, with all the
advantages previously discussed: optimal feature denoising, mod-
ulation of saliency responses by the discriminant power of the
underlying features, and ability to detect both feature presence
and absence. These differences in turn have a non-trivial impact

in the saliency templates T (2)
c of stage 2. SIFT templates are usu-

ally much less discriminant than those of Figure 3. By implement-
ing saliency in layer 2, the HDSN complements this advantage
with the identification of saliency configurations discriminant for
target recognition. We next show that these properties make the
HDSN more efficient in terms of image representation than all
other models, achieving higher accuracies with fewer layer 2 units
and a fairly simple training procedure.

4. RESULTS
An extensive set of experiments was conducted to evaluate HDSN
performance on saliency, object recognition, and localization
tasks. All experiments were performed on datasets available in
the literature, including Caltech101 (C101) (Fei-Fei et al., 2005),
15 scenes (N15) (Lazebnik et al., 2006), ALOI (Geusebroek et al.,
2005), and the pandaCam dataset of Han and Vasconcelos (2011).
Details of these datasets are given in the Supplementary Material.

4.1. OBJECT RECOGNITION EXPERIMENTS
We start with object recognition. While, as shown in Table 2
the different approaches can be mapped to a common network

form, the standard configurations of the different methods dis-
agree even in the most elementary parameters, e.g., number of
layer 2 units. For example, SPMK usually relies on a dictionary
of size 1024 and a pyramid of 21 pooling regions. While this
should be compared to an HMAX model of 21K units, only 4K
are usually adopted in the HMAX literature. Methods that learn a
codebook per class increase the number of units by a few orders
of magnitude. In the worst case of Boiman et al. (2008) (as many
units as training examples), the layer 2 RBF has 10 million units.
This lack of uniformity makes it difficult to compare the dif-
ferent approaches. To overcome this problem, we implemented
all units discussed in the previous sections and used them to
build networks that are otherwise identical, i.e., have the same
configuration, use the same learning procedure, etc. We then
compared network performance on C101 and N15. A first experi-
ment measured the impact of each unit of Table 2 on recognition
accuracy. This experiment used a relatively small network, with
fixed (Gabor) templates in the bottom layer and randomly sam-
pled (from the first layer responses) templates in the second layer.
In a second experiment, we built a larger HDSN and compared its
performance to the results reported for the various recognition
algorithms in the literature. This was mostly a sanity check, to
ensure that the HDSN could achieve the results reported for these
methods, using the parameters with which they were proposed.
It is assumed that these parameters were optimized to guaran-
tee the best results per method, of the network components, but
allowing an unbiased estimate of the best possible performance
per architecture.

4.1.1. Impact of network units on recognition performance
To test the impact of network units on recognition accuracy, we
started from a base network with the configuration of Table 1 and
the following operations:

(1) Local normalization of image intensities, according to (16);
(2) S(1) units: Gabor filters, no saliency;
(3) C(1) units: average pooling;

(4) S(2) units: 40 LUs with randomly selected templates T (2)
c per

class, for a total of C(2) = 600 channels for N15 and C(2) =
4040 channels for C101.

(5) C(2) units: average pooling.

In a first experiment, we compared the impact of layer 1 units on
network performance. This was done, by replacing the S(1) and
C(1) units with those on the left of Table 3. The same Gabor chan-
nels were used across settings, the convolutional network layer
(CN) was implemented with (25)–(28), SIFT with (31)–(31), and
discriminant saliency (DS) with (17) and (2). The pooling oper-
ator was that which performed best for each network. Note that
the type II network is identical to HMAX (Serre et al., 2007), and
the first layer of the networks of type III, IV, and V is, respec-
tively, layer 1 of the convolutional network of Jarrett et al. (2009),
the first stage (SIFT) of the computer vision methods of Lazebnik
et al. (2006); Boiman et al. (2008); Yang et al. (2009); Zhou et al.
(2009), and layer 1 of the HDSN.

The table supports several conclusions. First, pooling signifi-
cantly enhances recognition performance, as all methods with C
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Table 3 | Recognition accuracy of a 2-layer network with different units.

Type Simple unit Pooling L2 N15 C101 Type L1 L2 N15 C101

I Filter – LU 58.7 ± 0.3 40.5 ± 0.8 I DS CPU 67.4 ± 1 61 ± 0.8

II Filter Max LU 65.6 ± 1.3 52.8 ± 1 II DS PU 68.1 ± 1 62.1 ± 1.1

III CN Max LU 67.1 ± 1.5 58.8 ± 1.3 III DS LU 68.3 ± 0.6 64.2 ± 1.3

IV SIFT Average LU 67.5 ± 0.6 62.8 ± 0.9 IV DS DS 80 ± 0.6 69.2 ± 1.3

V DS Average LU 68.3 ± 0.6 64.2 ± 1.3 V DS* DS 82.2 ± 0.7 69.9 ± 1.7

Left: impact of layer 1 units on recognition performance. Starting from a network (type I) with Gabor filters and no pooling in layer 1 and LU units with average

pooling in layer 2, several enhancements were added to layer 1. These consisted of convolutional network (CN), SIFT, or discriminant saliency (DS) units. Max and

average pooling operators were also tested, results are reported for the most effective. Right: impact of layer 2 units on recognition performance. In all cases, layer

1 consists of DS units. Layer 2 is implemented with CPU, PU, LU, or DS units. DS* reports to an enhanced layer 1, including feature selection.

units substantially outperformed the type I network. This find-
ing confirms the importance of the spatial invariance attributed
to this operation, and of C units in general. However, we did
not find an advantage for either average or max pooling. Second,
the addition of divisive normalization across features (bottom-
up orientation saliency) implemented by both the CN and SIFT
layers, further improved recognition accuracy. The gains of this
operation were particularly significant on C101. This can be
explained by the fact that shape is a more important cue for recog-
nition in C101 (an object database) than in N15 (a database of
scenes). Since this type of divisive normalization enhances edges
with a dominant orientation, it produces crisper layer 2 templates,
which are more informative about object shape. This enables large
gains in C101 (from 52.8 to 62.8% for SIFT) but is also beneficial
on N15 (from 65.6 to 67.5%). Third, for both datasets, the perfor-
mance of the SIFT layer was superior to that of the convolutional
network layer. This suggests that the sequence of S-unit opera-
tions of (31)–(31) is more effective than that of (25)–(28), but it
is difficult to ascertain why. Finally, DS units had the best over-
all performance. It is worth noting that, while the SIFT and CN
layers perform normalization both within (spatially) and across
channels, DS units only require within channel normalization.
This enables independent channel processing, considerably sim-
plifying the implementation of this network. In fact, the HDSN
layer has very little computational overhead with respect to the
HMAX layer of the type II network. As discussed in Section 2.2.2,
the only difference is the addition of the parametric ReLU units
of (11). On C101, this boosts recognition accuracy from 52.8 to
64.2%. Overall, the HDSN layer has the lowest complexity among
the top performing networks (types III to V).

To test the impact of the configuration of layer 2, we used
a network with a layer 1 of DS units. Besides likelihood units
(LU), layer 2 was implemented with posterior units (PU), class-
posterior units (CPU), and DS units. Since the number of layer
2 channels is drastically reduced when CPU units are used (from
the number of templates to the number of classes, e.g., 600 to 15 in
N15 and 4040 to 101 in C101), and this reduces the effectiveness
of the SVM that follows the network, we tried alternative CPU
configurations. Best results were obtained, in preliminary exper-
iments, by weighing PU units according to the posterior class
probability, i.e., multiplying (35) by (36). The resulting accura-
cies are summarized in the right of Table 3, network types I–IV.
Interestingly, neither PU nor CPU improved the performance of

LU. Unlike layer 1, cross-channel normalization did not show
any benefits in the second layer. Again, DS units achieved the
best performance, substantially improving the recognition of LUs
(68.3 to 80% on N15 and 64.2 to 69.2% on C101). In summary,
both the adoption of DS units and the hierarchical computation
of saliency produced substantial recognition gains. Note that the
HDSN (type IV of right column of Table 3) is a fairly simple
extension of HMAX (type II of the left column), both concep-
tually (addition of saliency) and algorithmically [addition of the
parametric ReLU units of (11)]. A comparison to the HMAX per-
formance, or even to an HMAX network with a DSN in the first
layer (type V, left column) shows very significant improvements:
from 66–68 to 80% on N15 and 53–64 to 69% on C101.

4.1.2. Large network
The previous experiments were based on a relatively small net-
work. We next compared the performance of a larger HDSN to the
results reported in the literature for the methods of Section 3.3.
We note that, when compared to these approaches, the features
implemented by the HDSN (Gabor filters and randomly selected
saliency templates) are fairly simple. The published results for
the other algorithms are frequently based on much more com-
plex features and feature selection. Examples include independent
component analysis (ICA) (Kanan and Cottrell, 2010), sparse
decompositions (Yang et al., 2009), or very large sets of random
features (Jarrett et al., 2009). Pinto et al. (2008) has shown that
a single layer network with many channels can outperform hier-
archical networks with few channels per layer. We considered a
limited set of enhancements of this type. The filter pool of the
first layer was first augmented with 63 discrete cosine transform
(DCT) filters of size 8 × 8 (the DCT set minus the average -DC-
filter). This is a proxy for the expansion of Jarrett et al. (2009),
who showed that a set of random projections can outperform a
Gabor decomposition. Feature selection was then implemented
by pooling the saliency measure of (7) across the visual field, per
feature X. The 4 channels of largest saliency were selected, main-
taining the dimensionality of layer 1 identical to HMAX (Mutch
and Lowe, 2008). The resulting recognition accuracy is shown as
type V in the right of Table 3, where DS∗ means “DS with feature
selection.” The more elaborate feature set had gains of 2.2% in
N15 and 0.7% in C101. No further extensions were considered.

Table 4 compares these results to the literature, where different
methods have very different numbers of layer 2 units. These are
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Table 4 | Comparison of a 2-layer HDSN to various methods from the literature, on the 15 scenes and Caltech101 Datasets.

Method # Layer 2 units Recognition rate # Layer 2 units Recognition rate

N15 C101 N15 C101 N15 C101 N15 C101

SPMK(L = 0) 400 200 74.8 ± 0.3 41.2 – – – –

SPMK (L = 2) – 4200 – 64.6 8400 – 81.4 ± 0.5 –

kNN-SVM – 3030 – 66.2 ± 0.5 – – – –

V1 model – 4000 – 42 ± 0.5 – 86,000 – 65

HMAX – 4075 – 56 – – – –

NBNN – – – – – 10 M – 70.4

Sparse SPMK 450 5120 75.3 ± 0.5 64.8 ± 0.7 21,504 21,504 80.28 ± 0.9 73.2 ± 0.5

convNN – 4096 – 65.5 – – – –

HGMM – – – – 46,080 310,272 85.2 73.1

HDSN 450 4040 82 ± 0.5 70 ± 0.5 22,500 20,200 85.4 ± 0.3 73.1 ± 0.6

Results are presented for different numbers of layer 2 units, and grouped into small (left) and large (right) networks. The comparison includes SPMK (Lazebnik et al.,

2006), kNN-SVM (Zhang et al., 2006), V1 model (Pinto et al., 2008), HMAX (Mutch and Lowe, 2008), NBNN (Boiman et al., 2008), sparse SPMK (Yang et al., 2009),

convNN (Jarrett et al., 2009), and HGMM (Zhou et al., 2009).

A B C

FIGURE 6 | (A) classification accuracy vs. training set size on ALOI. (B) Precision-recall curves for object localization on pandaCam. (C) Detection rate vs.
number of false positives per image for panda detection.

also shown in the table, which we organized by network dimen-
sionality. The left half reports to “small” networks (≈400 units
for N15, 4000 for C101), the right to “large” (≈20 K for both).
The HDSN performs well in both regimes. The most interesting
observation is, however, its performance among small networks,
where it is far superior to the next best methods (82 vs. 75%
on N15, 70 vs. 66% on C101). In fact, in N15, the small ver-
sion of HDSN outperforms the large versions of SPMK, NBNN,
and sparse SPMK. In C101, it is only outperformed by the large
versions of HGMM, and sparse SPMK. It should be pointed
that these are not the best results reported on these datasets.
Better performance can usually be obtained using SVM classi-
fiers with non-linear kernels, which we have not considered in
our implementation. For example, on C101, the accuracy of a
4000 unit SPMK classifier can be boosted to 74.4% by addition
of a chi-square kernel (Chatfield et al., 2011). This is slightly
superior to the results reported in Table 4 for the combination
of a 20,200 HDSN with a linear SVM. In summary, the HDSN
of 20,000 units has learned a high-dimensional embedding sim-
ilar to that of the kernel-SVM, which has orders of magnitude
higher implementation complexity. This is particularly impres-
sive given the simplicity of the random sampling procedure used

to learn the HDSN templates. Again, the comparison to an equiv-
alent network with no saliency computation (HMAX) shows very
large gains (from 56 to 70% recognition rate on C101 with 4000
units).

4.2. COMPARISON TO SALIENCY MEASURES
These results show that the HDSN outperforms architectures that
use no saliency, or bottom-up saliency measures such as SIFT. The
next comparison was to the top-down measure (LSN) of Elazary
and Itti (2010). Since no software is available for this network,
we compared the two approaches on ALOI, where LSN was orig-
inally evaluated. In addition to the HDSN (1000 units) and the
methods evaluated in (Elazary and Itti, 2010)—LSN, HMAX
(1000 units), and SIFT-based image matching (Lowe, 1999)—we
also considered a single layer HDSN (denoted DSN) and sparse
SPMK (1024 units). Figure 6A) compares the recognition rates
of all methods, showing that the HDSN has the best perfor-
mance. For example, with 27 training images per class, it has
a recognition rate of 95.6%, while sparse SPMK achieves 91%,
DSN 85.8%, LSN 83.8%, HMAX 83.4%, and SIFT 72.7%. These
results confirm that both the addition of discriminant saliency
(HDSN vs. HMAX) and its hierarchical computation (single-layer
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FIGURE 7 | Object localization on the pandaCam dataset. Top row:
example images. Second row: saliency maps produced by the
combination of SIFT descriptors (layer 1) and discriminant visual words
(layer 2). Third row: same for a combination of SIFT descriptors (layer 1)

and discriminant saliency (layer 2). Fourth row: saliency maps produced
by a single layer HDSN. Fifth row: same for a two-layer HDSN. In all
cases, the saliency map is obtained by summing simple unit outputs
across all channels.

DSN vs. two-layer HDSN) lead to substantial gains in recognition
performance.

4.3. OBJECT LOCALIZATION AND DETECTION
We next considered the problem of object localization, on the
pandaCam dataset, where we compared the performance of the
HDSN to those of a saliency method based on SIFT in layer 1
and discriminant visual words in layer 2 (Dorko and Schmid,
2005) (SIFT+DVW), a HDSN with layer 1 replaced by SIFT
units (SIFT+DS), and a single layer HDSN. SIFT+DVW is an
intermediate between an RBF and a layer of DS units: it is
based on visual words but emphasizes those that are discrimi-
nant for each class. Figure 7 shows saliency maps produced by
the four methods, by simply summing the S(2)-unit responses
across all feature channels. SIFT+DVW produces very noisy
maps, with many false positives on the background, and few
strong responses at target locations. The replacement of the DVW
by the DS layer (SIFT+DS) suppresses most of this noise, but
mostly produces edge maps, illustrating the limitations of SIFT:
detection of simple features, failure to respond to the object inte-
rior, and poor selectivity for the target. While improving on
DVW, the use of DS units in layer 2 cannot compensate for all
these limitations. In fact, the single-layer HDSN produces bet-
ter saliency maps than SIFT+DSN. Its maps are more selective
for the target, have greater response toward the object interior,
and respond more strongly to complex features such as the panda
face. Finally, HDSN achieves the best performance, with saliency
maps that are active in the target interior and have few false pos-
itives. These observations are confirmed by the precision recall
curves of Figure 6B). The average precision is 0.31 for HDSN,

0.22 for single layer HDSN, 0.22 for SIFT+DS, and 0.16 for
SIFT+DVW.

A final set of experiments was performed on object detection.
An object detector was implemented by applying a box filter and
non-maximum suppression to the saliency map of an HDSN with
200 layer 2 units. This was compared to a 6 component part
model (partModel) of Felzenszwalb et al. (2009), sparse SPMK,
SPMK, and the Viola-Jones (VJ) detector (Viola and Jones, 2004).
Sparse SPMK, SPMK, and VJ used a sliding window, with win-
dows of seven scales, and step size of 10 pixels. Non-maximum
suppression was implemented as in Felzenszwalb et al. (2009),
and applied to all approaches. SPMK and sparse SPMK used a
spatial pyramid of 2 levels, and a codebook of 1000 visual words.
Curves of detection rate vs false positives per image (fppi) are
shown in Figure 6C). The partModel was unable to model pandas
with the finite set of poses available, achieving the worst per-
formance. Both sparse SPMK and SPMK produced a significant
improvement, with sparse SPMK achieving slightly better per-
formance. Another performance boost was achieved with the VJ
detector. Finally, HDSN had the overall best performance. The
detection rates at 0.3 fppi were 71.5% for HDSN, 66% for VJ,
58.6% for sparse SPMK, 56.8% for SPMK, and 43.8% for the
partModel.

5. CONCLUSIONS
In this work, we have investigated the evolutionary benefits of
integrating attention and object recognition, by introducing a
joint model, the HDSN, for saliency and recognition. HDSNs are
networks whose layers implement top-down saliency detectors
based on features of increasing selectivity and invariance. This
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is accomplished by (1) learning saliency templates of increasing
complexity and (2) adopting pooling operators of increasing sup-
port, in higher network layers. It was shown that HDSNs are
consistent with the standard neurophysiologic model of the visual
cortex but have a precise computational justification, and a statis-
tical interpretation for all network computations. This enables the
statistical learning of all network parameters and the explicit opti-
mization of the network for recognition. The learning of HDSN
parameters requires very simple mechanisms and has minimal
computational cost over previous models, such as HMAX or con-
volutional neural networks, that lack an explicit connection to
saliency. When compared to these models, HDSNs have a more
precise mapping to the cortical neurophysiology, and explicitly
account for both target and background hypotheses in the com-
putation of all network layers. This results in saliency templates
that are highly selective for the object classes of interest. The
HDSN also introduces a new type of non-linearity, the paramet-
ric ReLU, whose parameters can be tuned for the detection of
object classes of interest. This enables a number of functional
enhancements, including optimal feature denoising mechanisms
for recognition, modulation of saliency responses by the discrim-
inant power of the underlying features, and ability to detect both
feature presence and absence. A detailed experimental evaluation
has provided evidence for the advantages of all these functional
enhancements, as well as for the class-specific tuning inherent
to discriminant saliency, and the gains of saliency layers using
templates of increasing complexity, target selectivity, and invari-
ance. It was also shown that normalization across orientation
channels does not necessarily benefit recognition. This is an inter-
esting finding, which enables much simpler networks and justifies
the known cortical organization into orientation selective hyper-
columns. Perhaps more importantly, the experiments presented
suggest that there are non-trivial benefits in integrating atten-
tion and recognition. While attention is frequently modeled as
a pre-processor (selector of regions), e.g., the classical dichotomy
between pre-attentive and attentive vision, HDSNs assume that
recognition is a component of attention and vice-versa. This was
shown to substantially improve performance in core attention
tasks, such as object localization, and core recognition tasks, such
as object detection. In fact, it was shown that a single network
can perform effectively in the problems of object localization,
recognition, and detection, by a simple rearrangement of how
the saliency maps produced by the different templates are pro-
cessed: in parallel for recognition, and additively for localization
and detection.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fncom.
2014.00109/abstract
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