
Journal of Machine Learning Research 15 (2014) 1-41 Submitted 3/12; Revised 10/13; Published 7/14

Boosting Algorithms for Detector Cascade Learning

Mohammad Saberian saberian@ucsd.edu

Nuno Vasconcelos nuno@ucsd.edu

Statistical Visual Computing Laboratory,

University of California, San Diego

La Jolla, CA 92039, USA

Editor: Yoram Singer

Abstract

The problem of learning classifier cascades is considered. A new cascade boosting algorithm,
fast cascade boosting (FCBoost), is proposed. FCBoost is shown to have a number of
interesting properties, namely that it 1) minimizes a Lagrangian risk that jointly accounts
for classification accuracy and speed, 2) generalizes adaboost, 3) can be made cost-sensitive
to support the design of high detection rate cascades, and 4) is compatible with many
predictor structures suitable for sequential decision making. It is shown that a rich family
of such structures can be derived recursively from cascade predictors of two stages, denoted
cascade generators. Generators are then proposed for two new cascade families, last-stage
and multiplicative cascades, that generalize the two most popular cascade architectures in
the literature. The concept of neutral predictors is finally introduced, enabling FCBoost
to automatically determine the cascade configuration, i.e., number of stages and number
of weak learners per stage, for the learned cascades. Experiments on face and pedestrian
detection show that the resulting cascades outperform current state-of-the-art methods in
both detection accuracy and speed.

Keywords: complexity-constrained learning, detector cascades, sequential decision-making,
boosting, ensemble methods, cost-sensitive learning, real-time object detection

1. Introduction

There are many applications where a classifier must be designed under computational con-
straints. A prime example is object detection, in computer vision, where a classifier must
process hundreds of thousands of sub-windows per image, extracted from all possible im-
age locations and scales, at a rate of several images per second. One possibility to deal
with this problem is to adopt sophisticated search strategies, such as branch-and-bound
or divide-and-conquer, to reduce the number of sub-windows to classify (Lampert et al.,
2009; Vijayanarasimhan and Grauman, 2011; Lampert, 2010). While these methods are
compatible with popular classification architectures, e.g., the combination of a support vec-
tor machine (SVM) and the bag-of-words image representation, they do not speed up the
classifier itself. An alternative solution is to examine all sub-windows but adapt the com-
plexity of the classifier to the difficulty of their classification. This strategy has been the
focus of substantial attention since the introduction of the detector cascade architecture
(Viola and Jones, 2001). As illustrated in Figure 1 a) this architecture is implemented as
a sequence of binary classifiers h1(x), . . . hm(x), known as the cascade stages. These stages

c©2014 Mohammad Saberian and Nuno Vasconcelos.

Saberian and Vasconcelos

Declared

as target

input

patterns Rejected

F F F

T T T

(a) (b)

Figure 1: (a) detector cascade and (b) examples of weak learners used for face detection
(Viola and Jones, 2001).

have increasing complexity, ranging from a few machine operations for h1(x) to extensive
computation for hm(x). An example x is declared a target by the cascade if and only if
it is declared a target by all its stages. Since the overwhelming majority of sub-windows
in an image do not contain the target object, a very large portion of the image is usually
rejected by the early cascade stages. This makes the average detection complexity quite
low. However, because the later stages can be arbitrarily complex, the cascade can have
very good classification accuracy. This was convincingly demonstrated by using the cascade
architecture to design the first real-time face detector with state-of-the-art classification ac-
curacy (Viola and Jones, 2001). This detector has since found remarkable practical success,
and is today popular in applications of face detection involving low-complexity processors,
such as digital cameras or cell phones.

In the method of Viola and Jones (2001), cascade stages are designed sequentially, by
simply training each detector on the examples rejected by its predecessors. Each stage
is designed by boosting decision stumps that operate on a space of Haar wavelet fea-
tures, such as those shown in Figure 1-b). Hence, each stage is a linear combination of
weak learners, each consisting of a Haar wavelet and a threshold. This has two appeal-
ing properties. First, because it is possible to evaluate each Haar wavelet with a few
machine operations, cascade stages can be very efficient. Second, it is possible to con-
trol the complexity of each stage by controlling its number of weak learners. However,
while fast and accurate, this detector is not optimal under any sensible definition of cas-
cade optimality. For example, it does not address the problems of 1) how to automat-
ically determine the optimal cascade configuration, e.g., the numbers of cascade stages
and weak learners per stage, 2) how to design individual stages so as to guarantee opti-
mality of the cascade as a whole, or 3) how to factor detection speed as an explicit vari-
able of the optimization process. These limitations have motivated many enhancements to
the various components of cascade design, including 1) new features (Lienhart and Maydt,
2002; Dalal and Triggs, 2005; Pham et al., 2010; Dollár et al., 2009), 2) faster feature se-
lection procedures (Wu et al., 2008; Pham and Cham, 2007), 3) post-processing procedures
to optimize cascade performance (Lienhart and Maydt, 2002; Luo, 2005; Sun et al., 2004),
4) extensions of adaboost for improved design of the cascade stages (Viola and Jones,
2002; Masnadi-Shirazi and Vasconcelos, 2007; Sochman and Matas, 2005; Schneiderman,
2004; Li and Zhang, 2004; Tuzel et al., 2008), 5) alternative cascade structures (Xiao et al.,

2

Boosting Detector Cascade

2003; Bourdev and Brandt, 2005; Xiao et al., 2007; Sochman and Matas, 2005), and 6)
joint, rather than sequential stage design (Dundar and Bi, 2007; Lefakis and Fleuret, 2010;
Sochman and Matas, 2005; Bourdev and Brandt, 2005). While these advances improved
the performance, the optimal design of a whole cascade is still an open problem. Most
existing solutions rely on assumptions, such as the independence of cascade stages, that do
not hold in practice.

In this work, we address the problem of automatically learning both the configuration
and the stages of a high detection rate detector cascade, under a definition of optimality
that accounts for both classification accuracy and speed. This is accomplished with the fast
cascade boosting (FCBoost) algorithm, an extension of adaboost derived from a Lagrangian
risk that trades-off detection performance and speed. FCBoost optimizes this risk with
respect to a predictor that complies with the sequential decision making structure of the
cascade architecture. These predictors are called cascade predictors, and it is shown that a
rich family of such predictors can be derived recursively from a set of cascade generator func-
tions, which are cascade predictors of two stages. Boosting algorithms are derived for two
elements of this family, last-stage and multiplicative cascades. These are shown to generalize
the cascades of embedded (Xiao et al., 2003; Bourdev and Brandt, 2005; Xiao et al., 2007;
Sochman and Matas, 2005; Masnadi-Shirazi and Vasconcelos, 2007; Pham et al., 2008) or
independent (Viola and Jones, 2001; Schneiderman, 2004; Brubaker et al., 2008; Wu et al.,
2008; Shen et al., 2011, 2010) stages commonly used in the literature. The search for the
cascade configuration is naturally integrated in FCBoost by the introduction of neutral pre-
dictors. This allows FCBoost to automatically determine 1) number of cascade stages and
2) number of weak learners per stage, by simple minimization of the Lagrangian risk. The
procedure is compatible with existing cost-sensitive extensions of boosting (Viola and Jones,
2002; Masnadi-Shirazi and Vasconcelos, 2007; Pham et al., 2008; Masnadi-Shirazi and Vasconcelos,
2010) that guarantee cascades of high detection rate, and generalizes adaboost in a number
of interesting ways. A detailed experimental evaluation on face and pedestrian detection
shows that the resulting cascades outperform current state-of-the-art methods in both de-
tection accuracy and speed.

The paper is organized as follows. Section 2 reviews the challenges of cascade learning
and previously proposed solutions. Section 3 briefly reviews adaboost, the most popular
stage learning algorithm, and proposes its generalization for the learning of detector cas-
cades. Section 4 studies the structure of cascade predictors, introducing the concept of
cascade generators. Two generators are then proposed, from which two cascade families
(last-stage and multiplicative) are derived. The search for the cascade configuration is then
studied in Section 5. In this section the Lagrangian extension of the cascade boosting algo-
rithm is introduced, so as to account for detector complexity in the cascade optimization,
and a procedure for the automatic addition of cascade stages during boosting is developed,
using neutral predictors. All these contributions are consolidated into the FCBoost algo-
rithm in Section 6, whose specialization to last-stage and multiplicative cascades is shown
to generalize the two main previous approaches to cascade design. A number of interesting
properties of the algorithm are also discussed, and a cost-sensitive extension is derived.
Finally, an experimental evaluation is presented in Section 7 and some conclusions drawn in
Section 8. An early version of this work was presented in NIPS (Saberian and Vasconcelos,
2010).

3

Saberian and Vasconcelos

2. Prior Work

A large literature on detector cascade learning has emerged over the past decade. In this
section, we briefly review the main problems in this area and their current solutions.

2.1 The Problems of Cascade Learning

As illustrated in Figure 1, a cascaded detector is a sequence of detector stages. The aim
is to detect instances from a target class. Examples from this class are denoted positives
while all others are denoted negatives. An example rejected, i.e., declared a negative, by
any stage is rejected by the cascade. Examples classified as positives are propagated to
subsequent stages. To be computationally efficient, the cascade must use simple classi-
fiers in the early stages and complex ones later on. Under the procedure proposed by
Viola and Jones (2001), the cascade designer must first select a number of stages and the
target detection/false-positive rate for each stage. A high detection rate is critical, since im-
properly rejected positives cannot be recovered. The false-positive rate is less critical, since
the cascade false-positive rate can be decreased by addition of stages, although at the price
of extra computation. The stages are designed with adaboost. The target detection rate
is met by manipulating the stage threshold, and the target false-positive rate by increasing
the number of weak learners. This frequently leads to an exceedingly complex learning
procedure. One difficulty is that the optimal cascade configuration (number of stages and
stage target rates) is unknown. We refer to this as the cascade configuration problem. While
some configurations have evolved by default, e.g., 20 stages, with a detection rate of 99.5%
and a false-positive rate of 50%, there is nothing special about these values. This problem
is compounded by the fact that, for late stages where negative examples are close to the
classification boundary, it may be impossible to meet the target rates. In this case, the
designer must backtrack (redesign some of the previous stages). Frequently, various itera-
tions of parameter tuning are needed to reach a satisfactory cascade. Since each iteration
requires boosting over a large set of examples and features, the process can be tedious and
time consuming. We refer to this as the design complexity problem.

Even when a cascade is successfully designed, the process has no guarantees of opti-
mal classification performance. One problem is that, while computationally efficient, the
Haar wavelet features lacks discriminant power for many applications. This is the fea-
ture design problem. This problem is frequently compounded by lack of convergence of
adaboost. Note that while adaboost is consistent (Bartlett and Traskin, 2007), there are
no guarantees that a classifier with small number of boosting iterations, e.g., early stages
of a cascade, will produce classifiers that generalize well. We refer to this as the conver-
gence problem. This problem is magnified by the mismatch between the adaboost risk,
which penalizes misses/false-positives equally, and the asymmetry of the target detection
and false-positive rates used in practice. Although a stage can always meet the target
detection rate by threshold manipulation, the resulting false-positive rate can be strongly
sub-optimal (Masnadi-Shirazi and Vasconcelos, 2010). In general, better performance is
obtained with asymmetric learning algorithms, that optimize the detector explicitly for the
target detection rate. This is the cost-sensitive learning problem. Besides classification
optimality, the learned cascade is rarely the fastest possible. This is not surprising, since
speed is not an explicit variable of the cascade optimization process. While the specification

4

Boosting Detector Cascade

of stage false-positive rates can be used to shuffle computation between stages, there is no
way to predict the amount of computation corresponding to a particular rate. This is the
complexity optimization problem.

2.2 Previous Solutions

Over the last ten years, significant research has been devoted to all of the above problems.

Feature design: Viola and Jones introduced a very efficient set of Haar wavelets
(Viola and Jones, 2001). They showed that these features could be extracted, with a few
operations, from an integral image (cumulative image sum). While all features in the original
Haar set were axis-aligned, it is possible to extent it for 45◦ rectangles, (Lienhart and Maydt,
2002). Similarly, several authors pursued extensions to other orientations (Carneiro et al.,
2008; Du et al., 2006; Messom and Barczak, 2006). More recently, this has been extended to
compute integral images over arbitrary polygonal regions (Pham et al., 2010). Beyond these
features, integral images can also be used to efficiently compute histograms (Porikli, 2005).
This reduces to quantizing the image into a set of channels (associated with the histogram
bins) and computing an integral image per channel. For example, a computationally efficient
version of the HOG descriptor (Dalal and Triggs, 2005) was then developed and used to
design a real-time pedestrian detector cascade (Zhu et al., 2006). More recently, this idea
has been extended to multiple other channels (Dollár et al., 2009). Finally, extensions
have been developed for more general statistical descriptors, e.g., the covariance features
(Tuzel et al., 2008). While the algorithms proposed in this work support any of these
features, we adopt the Haar set (Viola and Jones, 2001). This is mostly for consistency
with the cascade learning literature, where Haar wavelets are predominant.

Design of stage classifiers: A number of enhancements to the stage learning method
of Viola and Jones detector have been proposed specifically to address the problems of
convergence rate, cost-sensitive learning, and training complexity. One potential solution
to the convergence problem is to adopt recent extensions of adaboost, which converge with
smaller numbers of weak learners. Since adaboost is a greedy feature selection algorithm,
the effective number of weak learners can be reduced by using forward-backward feature
selection procedures (Zhang, 2011) or reweighing weak learners by introduction of sparsity
constraints in the optimization (Collins et al., 2002; Duchi and Singer, 2009). This results
in more accurate classification with less weak learners, i.e., a faster classifier. While these
algorithms have not been used in the cascade learning literature, several authors have
used similar ideas to improve stage classifiers. For example, augmenting adaboost with a
floating search that eliminates weak learners of small contribution to classifier performance
(Li and Zhang, 2004) or by using linear discriminant analysis (LDA) (Shen et al., 2011,
2010). Moreover, by interpreting the boosted classifier as a hyperplane in the space of
weak learner outputs, several authors have shown how to refine the hyperplane normal so
as to maximize class discrimination. Procedures that recompute the weight of each weak
learner have been implemented with SVMs (Xiao et al., 2003), variants of LDA (Wu et al.,
2008; Shen et al., 2011, 2010), and non-linear feature transformations (Schneiderman, 2004).
The hyperplane refinement usually optimizes classification error directly, rather than the
exponential loss of adaboost, further improving the match between learning objective and
classification performance. Finally, faster convergence is usually possible with different weak

5

Saberian and Vasconcelos

learners, e.g., linear SVMs (Zhu et al., 2006) or decision trees of depth two (Dollár et al.,
2009), and boosting algorithms such as realboost or logitboost (Sochman and Matas, 2005;
Schneiderman, 2004; Li and Zhang, 2004; Tuzel et al., 2008).

Beyond classification performance, some attention has been devoted to design complex-
ity. Since the bulk of the learning time is spent on weak learner selection, low-complexity
methods have been proposed for this. For example, it is possible to trade off memory for
computational efficiency (Wu et al., 2008) or to model Haar wavelet responses as Gaus-
sian variables, whose statistics can be computed efficiently (Pham and Cham, 2007). While
speeding up the design of each stage, these methods do not eliminate all aspects of threshold
tuning, stage backtracking, etc. It could be argued that this is the worst component of design
complexity, since these operations require manual supervision. A number of enhancements
have been proposed in this area. While Viola and Jones proposed stage-specific threshold
adjustments (Viola and Jones, 2001), it is possible to formulate threshold adjustments as an
a-posteriori optimization of the whole cascade (Luo, 2005; Sun et al., 2004). These methods
are hampered by the limited effectiveness of threshold adjustments when stage detectors
have poor ROC performance (Masnadi-Shirazi and Vasconcelos, 2010). Better performance
is usually achieved with cost-sensitive extensions of boosting, which optimize a cost-sensitive
risk directly (Viola and Jones, 2002; Masnadi-Shirazi and Vasconcelos, 2007; Pham et al.,
2008). More recently, Masnadi-Shirazi et al. proposed Bayes consistent cost-sensitive ex-
tensions of adaboost, logitboost, and realboost (Masnadi-Shirazi and Vasconcelos, 2010).
These algorithms were shown to substantially improve the false-positive performance of
cascades of high detection rate (Masnadi-Shirazi and Vasconcelos, 2007). These could be
combined with the methods which devise a predictor of the optimal false positive and de-
tection rate for each stage, from statistics of the previous stages, so as to design a cascade
of cost-sensitive stages automatically (Brubaker et al., 2008; Dundar and Bi, 2007).

Cascade configuration: Most of the above enhancements assume a known cascade
configuration and sequential stage learning. This is a suboptimal design strategy and the as-
sumed cascade configuration may not be attainable in practice. An alternative is to adopt
cascades of embedded stages where each stage is the starting point for the design of the
next (Xiao et al., 2003; Bourdev and Brandt, 2005; Xiao et al., 2007; Sochman and Matas,
2005; Masnadi-Shirazi and Vasconcelos, 2007; Pham et al., 2008). The main advantage of
this structure is that the whole cascade can be designed with a single boosting run, and
adding exit points to a standard classifier ensemble. This also minimizes the convergence
rate problems of individual stage design. Using Wald’s theory of sequential decision mak-
ing, it is possible to derive a method for learning embedded stages (Sochman and Matas,
2005). While attempting to optimize the whole cascade, these approaches do not fully
address the configuration problem. Some simply add an exit point per weak learner
(Masnadi-Shirazi and Vasconcelos, 2007; Xiao et al., 2007; Sochman and Matas, 2005), while
others use post-processing (Bourdev and Brandt, 2005; Xiao et al., 2003) or pre-specified
detection and false-positive rates (Pham et al., 2008) to determine exit point locations.
More recently, it is proposed to learn all stages simultaneously, by modeling a cascade as
the product, or logical “AND”, of its stages (Lefakis and Fleuret, 2010; Raykar et al., 2010).

Overall, despite substantial progress, no method addresses all problems of cascade learn-
ing. Since few approaches explicitly optimize the cascade configuration, fewer among these
rely on cost-sensitive learning, and no method optimizes detection speed explicitly, cas-

6

Boosting Detector Cascade

cade learning can require extensive trial and error. This can be quite expensive from a
computational point of view and leads to a tedious design procedure, which can produce
sub-optimal cascades. In the following sections we propose an alternative framework, which
is fully automated and jointly determines 1) the number of cascade stages, 2) the number
of weak learners per stage, and 3) the predictor of each stage, by minimizing a Lagrangian
risk that is cost-sensitive and explicitly accounts for detection speed.

3. An Extension of Adaboost for the Design of Classifier Cascades

We start with a brief review of boosting.

3.1 Boosting

A binary classifier h : X → {−1, 1} maps an example x into a class label y(x). A learning
algorithm seeks the classifier of minimum probability of error, PX(h(x) 6= y(x)), in the
space of binary mappings

H = {h|h : X → {−1, 1}} .

Since H is not convex and h ∈ H not necessarily differentiable, this is usually done by
restricting the search to mappings of the form

h(x) = sign[f(x)],

where f : X → R, is a predictor. The goal is then to learn the optimal f(x) in a set of
predictors

F = {f |f : X → R} .

This is the predictor which minimizes the classification risk, RE : F → R,

RE [f] = EX,Y {L(y(x), f(x))} ≃
1

|St|

∑

i

L(yi, f(xi)), (1)

where L : {+1,−1} × R → R is a loss function, and St = {(x1, y1), . . . , (xn, yn)} is a set of
training examples xi of labels yi.

Boosting algorithms are iterative procedures that learn f as a combination of simple
predictors, known as weak learners, from a set G = {g1(x), . . . , gn(x)} ⊂ F. The optimal
combination is the solution of

{

minf(x) RE [f]

s.t : f(x) ∈ span(G).
(2)

Each boosting iteration reweights the training set and adds the weak learner of lowest
weighted error rate to the weak learner ensemble. When G is rich enough, i.e., contains a
predictor with better than chance-level weighted error rate for any distribution over training
examples, the boosted classifier can be arbitrarily close to the minimum probability of error
classifier (Freund and Schapire, 1997). For most problems of practical interest, G is an
overcomplete set and the solution of (2) can have many decompositions in span(G). In this
case, sparser decompositions are likely to have better performance, i.e., faster computation

7

Saberian and Vasconcelos

and better generalization. Boosting can be interpreted as a greedy forward feature selection
procedure to find such sparse solutions.

Although the ideas proposed in this work can be combined with most boosting al-
gorithms, we limit the discussion to adaboost (Freund and Schapire, 1997). This is an
algorithm that learns a predictor f by minimizing the risk of (1) when L is the negative
exponential of the margin y(x)f(x)

L(y(x), f(x)) = e−y(x)f(x). (3)

This is known as the exponential loss function (Schapire and Singer, 1999).

The boosting algorithms proposed in this paper are inspired by the statistical view of
adaboost (Mason et al., 2000; Friedman, 1999). Under this view, each iteration of boosting
computes the functional derivatives of the risk along the directions of the weak learners
gk(x), at the current solution f(x). This can be written as

< δRE [f], g > =
d

dǫ
RE [f + ǫg]

∣

∣

∣

∣

ǫ=0

=
1

|St|

∑

i

[

d

dǫ
e−yi(f(xi)+ǫg(xi))

]

ǫ=0

= −
1

|St|

∑

i

yiwig(xi), (4)

where yi = y(xi) and

wi = w(xi) = e−yif(xi), (5)

is the weight of example xi. The latter measures how well xi is classified by the current
predictor f(x). The predictor is then updated by selecting the direction (weak learner) of
steepest descent

g∗(x) = argmax
g∈G

< −δRE [f], g >

= argmax
g∈G

1

|St|

∑

i

yiwig(xi), (6)

and computing the optimal step size along this direction

α∗ = argmin
α∈R

RE [f + αg∗]. (7)

While the optimal step size has a closed form for adaboost (Freund and Schapire, 1997), it
can also be found by a line search. The predictor is finally updated according to

f(x) = f(x) + α∗g∗(x), (8)

and the procedure iterated, as summarized in Algorithm 1.

8

Boosting Detector Cascade

Algorithm 1 adaboost

Input: Training set St = {(x1, y1), . . . , (xn, yn)}, where yi ∈ {1,−1} is the class label of
example xi, and number of iterations N .
Initialization: Set f(x) = 0.
for t = 1 to N do

Compute < −δRE [f], g > for all weak learners using (4).
Select the best weak learner g∗(x) using (6).
Find the optimal step size α∗ along g∗(x) using (7).
Update f(x) = f(x) + α∗g∗(x).

end for

Output: decision rule: sign[f(x)]

3.2 Cascade Boosting

In this work, we consider the question of whether boosting can be extended to learn a
detector cascade. We start by introducing some notation. As shown in Figure 1-a), a
classifier cascade is a binary classifier H(x) ∈ H implemented as a sequence of classifiers

hi(x) = sgn[fi(x)] i = 1, . . . ,m, (9)

where the predictors fi(x) can be any real functions, e.g., linear combinations of weak
learners. The cascade implements the mapping H : X → {−1, 1} where

H(x) = Hm[h1, . . . , hm](x) =

{

−1 if ∃ k : hk(x) < 0
+1 otherwise,

(10)

and Hm[h1, . . . , hm] is a classifier cascading (CC) operator, i.e., a functional mapping Hm :
Hm → H of the stage classifiers h1, . . . , hm into the cascaded classifier H.1

Similarly, it is possible to define a cascade predictor F (x) for H(x), i.e., a mapping
F : X → R such that

H(x) = sign[F (x)], (11)

where
F (x) = Fm[f1, . . . , fm](x), (12)

and Fm : Fm → F is a predictor cascading (PC) operator, i.e., a functional mapping of the
stage predictors f1, . . . , fm into the cascade predictor F . We will study the structure of this
operator in Section 4. For now, we consider the problem of learning a cascade, given that
the operator Fm is known.

To generalize adaboost to this problem it suffices to use the predictor F (x) in the
exponential loss of (3) and solve the optimization problem

minm,f1,...fm RE [F] =
1

|St|

∑

i e
−yiF (xi)

s.t : F (x) = Fm[f1, . . . , fm](x)
∀i fi(x) ∈ span(G)

(13)

1. The notation H
m[h1, . . . , hm](x) should be read as: the value at x of the image of (h1, . . . , hm) under

operator Hm.

9

Saberian and Vasconcelos

by gradient descent in span(G). The main difference with respect to adaboost is that, since
any of the cascade stages can be updated, multiple gradient steps are possible per iteration.
The directional gradient for updating the predictor of the kth stage is

< δRE [F], g >k=
d

dǫ
RE [F

m[f1, . . . fk + ǫg, . . . fm]]

∣

∣

∣

∣

ǫ=0

=
1

|St|

∑

i

[

d

dǫ
e−yiFm[f1,...fk+ǫg,...fm](xi)

]

ǫ=0

=
1

|St|

∑

i

{

(−yi)e
−yiFm[f1,...fm](xi)

[

d

dǫ
Fm[f1, . . . fk + ǫg, . . . fm]

]

ǫ=0

(xi)

}

= −
1

|St|

∑

i

yiw(xi)bk(xi)g(xi), (14)

with

w(xi) = e−yiFm[f1,...fm](xi) = e−yiF (xi) (15)

bk(xi) =
d

dǫ
Fm[f1, . . . fk + ǫg, . . . fm]

∣

∣

∣

∣

ǫ=0

(xi). (16)

The optimal descent direction for the kth stage is then

g∗k = argmax
g∈G

< −δRE [F], g >k

= argmax
g∈G

1

|St|

∑

i

yiw(xi)bk(xi)g(xi), (17)

the optimal step size along this direction is

α∗
k = argmin

α∈R
RE [F

m[f1, .., fk + αg∗k, ..fm]], (18)

and the optimal stage update is

fk(x) = fk(x) + α∗g∗(x). (19)

The steps of (15), (17), and (19) constitute a functional gradient descent algorithm for
learning a detector cascade, which generalizes adaboost. In particular, the weight of (15)
generalizes that of (5), reweighing examples by how well the current cascade classifies them.
The weak learner selection rule of (17) differs from that of (6) only in that this weight is
multiplied by coefficient bk(xi). Finally, (19) is an additive update, similar to that of (8). If
the structure of the optimal cascade were known, namely how many stages it contains, these
steps could be used to generalize Algorithm 1. It would suffice to, at each iteration t, select
the stage k such that g∗k achieves the smallest risk in (18) and update the predictor of that
stage. This only has a fundamental difference with respect to adaboost: the introduction of
the coefficients bk(xi) in the weak learner selection. We will see that the procedure above
can also be extended into an algorithm that learns the cascade configuration. Since these
extensions depend on the PC operator F of (12), we start by studying its structure.

10

Boosting Detector Cascade

4. The Structure of Cascade Predictors

In this section, we derive a general form for Fm. We show that any cascade is compatible
with an infinite set of predictors and that these can be computed recursively. This turns out
to be important for the efficient implementation of the learning algorithm of the previous
section. We next consider a class of PC operators synthesized by recursive application of
a two-stage PC operator, denoted the generator of the cascade. Two generators are then
proposed, from which we derive two new cascade predictor families that generalize the two
most common cascade structures in the literature.

4.1 Cascade Predictors

From (10), a classifier cascade implements the logical-AND of the outputs of its stage
classifiers, i.e., Hm is the pointwise logical-AND of h1, . . . , hm,

Hm[h1, . . . , hm](x) = h1(x) ∧ . . . ∧ hm(x), (20)

where ∧ is the logical-AND operation. Since, from (10)-(12),

Hm[h1, . . . , hm](x) = sgn[Fm[f1, . . . , fm](x)], (21)

it follows from (9) that

sign[Fm[f1, . . . , fm](x)] = sgn[f1(x)] ∧ . . . ∧ sgn[fm(x)]. (22)

This holds if and only if
{

Fm[f1, . . . , fm](x) < 0 if ∃ k : fk(x) < 0
Fm[f1, . . . , fm](x) > 0 otherwise.

(23)

Since (22) holds for any operator with this property, any such Fm is denoted a pointwise
soft-AND of its arguments. In summary, while a cascade implements the logical-AND
of its stage decisions, the cascade predictor implements a soft-AND of the corresponding
stage predictions. Note that there is an infinite number of soft-AND operators which will
implement the same logical-AND operator, once thresholded according to (21). This makes
the set of cascade predictors much richer than that of cascades.

4.2 Recursive Implementation

For any m, it follows from (20) and the associative property of the logical-AND that

Hm[h1, . . . , hm] =

{

H2[h1, h2], m = 2
H2

[

h1,H
m−1[h2, . . . , hm]

]

m > 2.
(24)

A similar decomposition holds for the soft-AND operator of (23), since

sgn [Fm[f1, . . . , fm](x)] =

{

sgn
[

F2[f1, f2](x)
]

, m = 2
sgn

[

F2
[

f1,F
m−1[f2, . . . , fm]

]

(x)
]

m > 2.
(25)

The main difference between the two recursions is that, while there is only one logical-AND
H2[f1, f2], an infinite set of soft-AND operators F2[f1, f2] can be used in (25). In fact, it is

11

Saberian and Vasconcelos

possible to use a different operator F2 at each level of the recursion, i.e., replace F2 by F2
m,

to synthesize all possible sequences of soft-AND operators {F i}mi=2 for which the left-hand
side of (25) is the same. For simplicity, we only consider soft-AND operators of the form
of (25) in this work.

The recursions above make it possible to derive a recursive decomposition of both the
cascade and the sign of its predictor. In particular, defining

Hk(x) = Hm−k+1[hk, . . . , hm](x),

(24) leads to the cascade recursion

Hk(x) =

{

hm(x), k = m

H2 [hk, Hk+1] (x), 1 ≤ k < m,

with H1(x) = H(x). Similarly, for any sequence of soft-AND operators {F i}mi=2 compatible
with (25), defining

Fk(x) = Fm−k+1[fk, . . . , fm](x),

leads to the predictor recursion

sgn[Fk(x)] =

{

sgn[fm(x)], k = m

sgn
[

F2 [fk, Fk+1] (x)
]

, 1 ≤ k < m,
(26)

with sgn[F1(x)] = sgn[F (x)]. Simplifying (26), in the remainder of this work we consider
predictors of the form

Fk(x) =

{

fm(x), k = m

F2 [fk, Fk+1] (x), 1 ≤ k < m.
(27)

Since the core of this recursion is the two-stage predictor

G[f1, f2] = F2[f1, f2], (28)

this is denoted the generator of the cascade. We will show that the two most popular cascade
architectures can be derived from two such generators. For each, we will then derive the
cascade predictors Fk(x), the cascade boosting weights w(xi) of (15), and the coefficients
bk(xi) of (16). We start by defining some notation to be used in these derivations.

4.3 Some Definitions

Some of the computations of the following sections involve derivatives of Heaviside step
functions u(.), which are not differentiable. As is common in the neural network literature,
this problem is addressed with the sigmoidal approximation

u(x) ≈ σ(x) =
1

2
(tanh(µx) + 1). (29)

The parameter µ controls the sharpness of the sigmoid. This approximation is well known
to have the symmetry σ(−x) = 1 − σ(x) and derivative σ′(x) = 2µσ(x)σ(−x). We also
introduce the sequence of cascaded Heaviside functions

γk(x) =

{

1, k = 1
∏

j<k u[fj(x)], k > 1,
(30)

12

Boosting Detector Cascade

and cascaded rectification functions

ξk(x) =

{

1, k = 1
∏

j<k fj(x)u[fj(x)], k > 1,
(31)

where u(.) is the Heaviside step. The former generalize the Heaviside step, in the sense
that γk(x) = 1 if fj(x) > 0 for all j < k and γk(x) = 0 otherwise. The latter generalize
the half-wave rectifier, in the sense that γk(x) =

∏

j<k fj(x) if fj(x) > 0 for all j < k and
γk(x) = 0 otherwise.

4.4 Last Stage Cascades

The first family of cascade predictors that we consider is derived from the generator

G1[f1, f2](x) = f1(x)u[−f1(x)] + u[f1(x)]f2(x)

=

{

f1(x) if f1(x) < 0
f2(x) if f1(x) ≥ 0,

(32)

Using (27), the associated predictor recursion is

Fk(x) =

{

fm(x), k = m

fk(x)u[−fk(x)] + u[fk(x)]Fk+1(x), 1 ≤ k < m.
(33)

The kth stage of the associated cascade passes example x to stage k + 1 if fk(x) ≥ 0.
Otherwise, the example is rejected with prediction fk(x). Hence,

Fm[f1, . . . , fm](x) =

fj(x) if fj(x) < 0 and
fi(x) ≥ 0 i = 1, . . . , j − 1

fm(x) if fi(x) ≥ 0 i = 1 . . . ,m− 1,

i.e., the cascade prediction is that of the last stage visited by the example. For this reason,
the cascade is denoted a last-stage cascade.

This property makes it trivial to compute the weights w(x) of the cascade boosting
algorithm, using (15). It suffices to evaluate

w(xi) = e−yifj∗ (xi), (34)

where j∗ is the smallest k for which fk(xi) is negative and j∗ = m if there is no such k.
The computation of bk(x) with (16) requires a differentiable form of Fm[f1, . . . , fm] with

13

Saberian and Vasconcelos

respect to fk. This can be obtained by recursive application of (33), since

Fm[f1, . . . , fm](x) = F1(x)

= f1(x)u[−f1(x)] + u[f1(x)]F2(x)

= f1(x)u[−f1(x)] + u[f1(x)] {f2(x)u[−f2(x)] + u[f2(x)]F3(x)}

=

k−1
∑

i=1

fi(x)u[−fi(x)]
∏

j<i

u[fj(x)]

+ Fk(x)
∏

j<k

u[fj(x)]

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]γi(x)

]

+ Fk(x)γk(x) k = 1 . . .m

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]γi(x)

]

+ γk(x) {fk(x)u[−fk(x)] + u[fk(x)]Fk+1(x)} k < m

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]γi(x)

]

+ γk(x) {fk(x) + u[fk(x)][Fk+1(x)− fk(x)]}

≈

[

k−1
∑

i=1

fi(x)u[−fi(x)]γi(x)

]

+ γk(x)fk(x) + γk(x)σ[fk(x)][Fk+1(x)− fk(x)] (35)

where γk(x) are the cascaded Heaviside functions of (30) and we used the differentiable
approximation of (29) in (35). Note that neither the first term on the right-hand side of
(35) nor γk or Fk+1 depend on fk. It follows from (16) that

bk(x) =

{

γk(x), k = m

γk(x){1 + 2µσ[fk(x)][Fk+1(x)− fk(x)]}σ[−fk(x)] 1 ≤ k < m,
(36)

where σ(.) is defined in (29). Given x, all these quantities can be computed with a sequence
of a forward, a backward, and a forward pass through the cascade. The initial forward
pass computes γk(x) for all k according to (30). The backward pass then computes Fk+1(x)
using (33). The final forward pass computes the weight w(x) and coefficients bk(x) using
(34) and (36). These steps are summarized in Algorithm 2. The procedure resembles the
back-propagation algorithm for neural network training (Rumelhart et al., 1968).

4.5 Multiplicative Cascades

The second family of cascade predictors has generator

G2[f1, f2](x) = f1(x)u[−f1(x)] + u[f1(x)]f1(x)f2(x)

=

{

f1(x) if f1(x) < 0
f1(x)f2(x) if f1(x) ≥ 0.

(37)

Using (27), the associated predictor recursion is

Fk(x) =

{

fm(x), k = m

fk(x)u[−fk(x)] + u[fk(x)]fk(x)Fk+1(x), 1 ≤ k < m
(38)

14

Boosting Detector Cascade

Algorithm 2 Last-stage cascade

Input: Training example (x, y), stage predictors fk(x), k = 1, . . . ,m, sigmoid parameter
µ.
Evaluation:

Set γ1(x) = 1.
for k = 2 to m do

Set γk(x) = γk−1(x)u[fk(x)].
end for

Set Fm(x) = fm(x).
for k = m− 1 to 1 do

Set Fk(x) = fk(x)u[−fk(x)] + u[fk(x)]Fk+1(x).
end for

Learning:

Set w(x) = e−yfj∗ (x) where j∗ is the smallest k for which fk(xi) < 0 and j∗ = m if there
is no such k.
for k = 1 to m− 1 do

Set bk(x) = γk(x){1 + 2µσ[fk(x)][Fk+1(x)− fk(x)]}σ[−fk(x)].
end for

Set bk(x) = γm(x).
Output: w(x), {Fk(x), bk(x)}

m
k=1.

and

Fm[f1, . . . , fm](x) =

∏

i≤j fi(x) if fj(x) < 0 and

fi(x) ≥ 0 i = 1..j − 1
∏m

i=1 fi(x) if fi(x) ≥ 0 i = 1..m− 1.

Hence, the cascade predictor is the product of all stage predictions up-to and including that
where the example is rejected. This is denoted a multiplicative cascade.

The weights w(x) of the cascade boosting algorithm are

w(xi) = e−yi
∏

k≤j∗ fk(xi),

where j∗ is the smallest k for which fk(xi) is negative and j∗ = m if there is no such k.
The computation of bk(x) with (16) requires a differentiable form of Fm[f1, . . . , fm] with

15

Saberian and Vasconcelos

respect to fk. This can be obtained by recursive application of (38), since

Fm[f1, . . . , fm](x) = F1(x)

= f1(x)u[−f1(x)] + u[f1(x)]f1(x)F2(x)

= f1(x)u[−f1(x)] + u[f1(x)]f1(x){f2(x)u[−f2(x)] + u[f2(x)]f2(x)F3(x)}

=

k−1
∑

i=1

fi(x)u[−fi(x)]
∏

j<i

fj(x)u[fj(x)]

+ Fk(x)
∏

j<k

fj(x)u[fj(x)]

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]ξi(x)

]

+ Fk(x)ξk(x) k = 1 . . .m

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]ξi(x)

]

+ ξk(x) {fk(x)u[−fk(x)] + u[fk(x)]fk(x)Fk+1(x)} k < m

=

[

k−1
∑

i=1

fi(x)u[−fi(x)]ξi(x)

]

+ ξk(x)fk(x) {1 + u[fk(x)][Fk+1(x)− 1]}

≈

[

k−1
∑

i=1

fi(x)u[−fi(x)]ξi(x)

]

+ ξk(x)fk(x) {1 + σ[fk(x)][Fk+1(x)− 1]} , (39)

where ξi(x) are the rectification functions of (31) and we used (38) and the differentiable
approximation of (29) in (39). Since neither the first term on the right hand side, ξk, or
Fk+1 depend on fk, it follows from (16) that

bk(x) =

{

ξm(x), k = m

ξk(x){1 + σ[fk(x)][Fk+1(x)− 1]}{1 + 2µfk(x)σ[−fk(x)]} 1 ≤ k < m,
(40)

where σ(.) is defined in (29). Again, these coefficients can be computed with a forward, a
backward, and a forward pass through the cascade, which resembles back-propagation, as
summarized in Algorithm 3.

5. Learning the Cascade Configuration

Given a cascade configuration, Algorithms 2 or 3, could be combined with the algorithm
of Section 3.2 to extend adaboost to the design of last-stage or multiplicative cascades,
respectively. However, the cascade configuration is usually not known and must be learned.
This consists of determining the number of cascade stages and the number of weak learners
per stage.

5.1 Complexity Loss

We start by assuming that the number of cascade stages is known and concentrate on the
composition of these stages. So far, we have proposed to simply update, at each boosting
iteration, the stage k with the weak learner g∗k that achieves the smallest risk in (18). While
this will produce cascades with good detection accuracy, there is no incentive for the cascade
configuration to be efficient, i.e., achieve an optimal trade-off between detection accuracy

16

Boosting Detector Cascade

Algorithm 3 multiplicative cascade

Input: Training example (x, y), stage predictors fk(x), k = 1, . . . ,m, sigmoid parameter
µ.
Evaluation:

Set ξ1 = 1.
for k = 2 to m do

Set ξk(x) = ξk−1(x)fk(x)u[fk(x)].
end for

Set Fm(x) = fm(x).
for k = m− 1 to 1 do

Set Fk(x) = fk(x)u[−fk(x)] + u[fk(x)]fk(x) F k+1(x).
end for

Learning:

Set w(x) = e−y
∏

k≤j∗ fk(x) where j∗ is the smallest k for which fk(xi) < 0 and j∗ = m if
there is no such k.
for k = 1 to m− 1 do

Set bk(x) = ξk(x){1 + σ[fk(x)][Fk+1(x)− 1]}{1 + 2µfk(x)σ[−fk(x)]}.
end for

Set bm(x) = ξm(x).
Output: w(x), {Fk(x), bk(x)}

m
k=1.

and classification speed. To guarantee such a trade-off it is necessary to search for the
most accurate detector under a complexity constraint. This can be done by minimizing the
Lagrangian

L[F] = RE [F] + ηRC [F], (41)

where F (x) and RE [F] are the cascade predictor and classification risk of (13), respectively,

RC [F] = EX|Y {LC(F, x)|y(x) = −1} ≃
1

|S−
t |

∑

xi∈S
−
t

LC(F, xi),

is a complexity risk and η a Lagrange multiplier that determines the trade-off between
accuracy and computational complexity. RC [F] is the empirical average of a computa-
tional loss LC(F, x), which reflects the number of machine operations required to evaluate
F (x) = Fm[f1, . . . , fm](x), over the set S−

t of negatives in St. The restriction to negative
examples is not necessary but common in the classifier cascade literature, where computa-
tional complexity is usually defined as the average computation required to reject negative
examples. This is mostly because positives are rare and contribute little to the overall
computation.

As is the case for the classification risk, where the loss of (3) is an upper bound on
the margin and not the margin itself, the computational loss LC [F] is a surrogate for the
computational cost C(F, x) of evaluating the cascade prediction F (x) for example x. Using
the predictor recursions of Section 4.2, this cost can itself be computed recursively. Since,
by definition of cascade, example x is either rejected by the predictor fk of stage k or passed

17

Saberian and Vasconcelos

to the remaining stages,

C(Fk, x) =

{

Ω(fk) + u[fk(x)]C(Fk+1, x), k < m

Ω(fm), k = m,
(42)

where Fk(x) is as defined in (27) and Ω(fk) is the computational cost of evaluating stage k.
Defining C(Fm+1, x) = 0, it follows that

C(F, x) = Ω(f1) + u[f1(x)]C(F2, x)

= Ω(f1) + u[f1(x)][Ω(f2) + u[f2(x)]C(F3, x)]

=

k−1
∑

i=1

Ω(fi)
∏

j<i

u[fj(x)]

+ C(Fk, x)
∏

j<k

u[fj(x)]

=

[

k−1
∑

i=1

Ω(fi)γi(x)

]

+Ω(fk)γk(x) + u[fk(x)]C(Fk+1, x)γk(x)

= δk(x) + Ω(fk)γk(x) + θk(x)u[fk(x)], (43)

where γi(x) are the cascaded Heaviside functions of (30) and

δk(x) =
k−1
∑

i=1

Ω(fi)γi(x),

θk(x) = C(Fk+1, x)γk(x). (44)

This relates the cascade complexity to the complexity of the kth stage, Ω(fk). The surrogate
computational loss LC [F, x] is inspired by the surrogate classification loss of adaboost, which
upper bounds the zero-one loss u[−yf(x)] by the exponential e−yf(x). Using the bound
u[f(x)] ≤ ef(x) on (43) leads to

LC [F, x] = δk(x) + Ω(fk)γk(x) + θk(x)e
fk(x),

and the computational risk

RC [F] =
1

|S−
t |

∑

xi∈S
−
t

δk(xi) + Ω(fk)γk(xi) + θk(xi)e
fk(xi). (45)

To evaluate this risk, it remains to determine the computational cost Ω(fk) of the
predictor of the kth cascade stage. Since fk(x) =

∑

l αlgl(x), gl ∈ G, is a linear combination
of weak learners, we define

Ω(fk) =
∑

l

Ω(gl). (46)

Let W(fk) ⊂ G be the set of weak learners, gl, that appear in (46). In this work, we restrict
our attention to the case where all gl have the same complexity and Ω(fk) is proportional
to |W(fk)|. This is the most common scenario in computer vision problems, such as face
detection, where all weak learners are thresholded Haar wavelet features (Viola and Jones,
2001) and have similar computational cost. We will, however, account for the fact that

18

Boosting Detector Cascade

there is no cost in the repeated evaluation of a weak learner. For this, W(fk) is split into
two sets. The first, O(fk), contains the weak learners used in some earlier cascade stage
fj , j ≤ k. Since the outputs of these learners can be kept in memory, they require minimal
computation (multiplication by αl and addition to cumulative sum). The second is the set
N (fk) of weak learners unused in prior stages. The computational cost of fk is then

Ω(fk) = |N (fk)|+ λ|O(fk)|, (47)

where λ < 1 is the ratio of computation required to evaluate a used vs. new weak learner.
This implies that when updating the kth stage predictor

Ω(fk + ǫg) = Ω(fk) + ρ(g, fk),

with

ρ(g, fk) =

{

λ if g ∈ O(fk)
1 if g ∈ N (fk).

(48)

5.2 Boosting with Complexity Constraints

Given the computational risk of (45), it is possible to derive a boosting algorithm that
accounts for cascade complexity. We start by deriving the steepest descent direction of the
Lagrangian of (41), with respect to stage k

< −δL[F], g >k = < −δ (RE [F] + ηRC [F]) , g >k

= < −δRE [F], g >k +η < −δRC [F], g >k .

The first term is given by (14), the second requires the descent direction with respect to
the complexity risk RC [F]. Using (45),

< δRC [F], g >k=
d

dǫ
RC(F

m[f1, .., fk + ǫg, ..fm])

∣

∣

∣

∣

ǫ=0

=
1

|S−
t |

∑

i

ysi
d

dǫ
LC [Fm[f1, .., fk + ǫg, ..fm], xi]

∣

∣

∣

∣

ǫ=0

=
1

|S−
t |

∑

i

ysi
d

dǫ

[

δk(xi) + [Ω(fk) + ρ(fk, g)]γk(xi) + θk(xi)e
fk(xi)+ǫg(xi)

]

∣

∣

∣

∣

ǫ=0

=
1

|S−
t |

∑

i

ysiψk(xi)θk(xi)g(xi), (49)

where ysi = I(yi = −1), I(x) is the indicator function, θk(xi) as in (44) and

ψk(xi) = efk(xi). (50)

Finally, combining (14) and (49),

< −δL[F], g >k =
∑

i

(

yiw(xi)bk(xi)

|St|
− η

ysiψk(xi)θk(xi)

|S−
t |

)

g(xi), (51)

19

Saberian and Vasconcelos

Algorithm 4 BestStageUpdate

Input: Training set St, trade-off parameter η, cascade [f1, . . . , fm], index k of the stage
to update, sigmoid parameter µ.
for each pair (xi, yi) in St do
Compute w(xi), bk(xi), Fk(xi) e.g., using Algorithm 2 for last-stage or Algorithm 3 for
multiplicative cascades.
Compute θk(xi), ψk(xi) with (44) and (50).

end for

Find the best update (α∗
k, g

∗
k(x)) for the k

th stage using (51)-(54).
Output: α∗

k, g
∗
k(x)

where w(xi) = e−yiF (xi) and bk(xi) is given by (36) for last-stage and by (40) for multiplica-
tive cascades.

It should be noted that, although (51) does not depend on ρ(fk, g), the complexity of
the optimal weak learner g∗ affects the computational risk in (45) and thus the magnitude
of the steepest descent step. To account for this, we find the best update for fk in two
steps. The first step searches for the best update within O(fk) and N (fk)

g∗1,k = arg max
g∈O(fk)

< −δL[F], g >k (52)

g∗2,k = arg max
g∈N (fk)

< −δL[F], g >k, (53)

and computes the corresponding optimal steps sizes

α∗
j,k = argmin

α∈R
L[Fm[f1, ..fk + αgj,k, ..fm]], (54)

for j = 1, 2. The second step chooses the update that most reduces L[F] as the best update
for the kth stage. The overall procedure is summarized in Algorithm 4. Using this procedure
to cycle through all cascade stage updates within each iteration of the algorithm of Section
3.2 and selecting the one that most reduces L[F] produces an extension of adaboost for
cascade learning that optimizes the trade-off between detection accuracy and complexity.

5.3 Growing a Detector Cascade

So far, we have assumed that the number of cascade stages is known. Since this is usually
not the case, there is a need for a procedure that learns this component of the cascade
configuration. In this work, we adopt a greedy strategy, where cascade stages are added
by the boosting algorithm itself, whenever this leads to a reduction of the risk. It is as-
sumed that a new stage, or predictor g, can only be added at the end of the existing
cascade, i.e., transforming a m-stage predictor Fm[f1, . . . , fm](x) into a m+1-stage predic-
tor Fm+1[f1, . . . , fm, g](x). This is consistent with current cascade design practices, where
stages are appended to the cascade when certain heuristics are met.

The challenge of a risk-minimizing formulation of this process is to pose the addition of
a new stage as a possible gradient step. Recall that, at each iteration of a gradient descent
algorithm, the current solution, vt, is updated by

vt+1 = vt + αv,

20

Boosting Detector Cascade

where v is the gradient update and α is step size found by a line search. An immediate
consequence is that, if no update is taken in an iteration, i.e., α = 0 or v = 0, the value of the
objective function should remain unaltered. For the proposed cascade boosting algorithms
this condition is not trivial to guarantee when a new stage is appended to the current
cascade. For example, choosing g(x) = 0 may change the current solution since, in general,

Fm+1[f1, . . . , fm, 0](x) 6= Fm[f1, . . . , fm](x).

To address this problem, we introduce the concept of neutral predictors. A stage predictor
n(x) : X → R is neutral for a cascade of predictor Fm[f1, . . . , fm] if and only if

Fm+1[f1, . . . , fm, n](x) = Fm[f1, . . . , fm](x). (55)

If such a neutral predictor exists, then it is possible to grow a cascade by defining the new
stage as

fm+1(x) = n(x) + g(x),

where g(x) is the best update found by gradient descent. In this case, it follows from (55)
that a step of g(x) = 0 will leave the cascade risk unaltered. Given a cascade generator, a
predictor n that satisfies (55) can usually be found with (28), i.e., it suffices that n satisfies

fm(x) = G[fm, n](x), (56)

where G is the generator that defines the PC operator Fm. For example, from (32), the
neutral predictor of a last-stage cascade must satisfy

fm(x) = fm(x)u[−fm(x)] + u[fm(x)]n(x),

a condition met by
n(x) = fm(x). (57)

Similarly, from (37), the neutral predictor of a multiplicative cascade must satisfy

fm(x) = fm(x)u[−fm(x)] + u[fm(x)]fm(x)n(x),

which is met by
n(x) = 1. (58)

These neutral predictors are also computationally efficient. In fact, (57) and (58) add
no computation to the evaluation of predictor fm+1(x), i.e., to the computation of g(x)
itself. This is obvious for (58) which is a constant, and follows from the fact that fm(x)
has already been computed in stage m for (57). This computation can simply be reused at
stage m+ 1 with no additional cost. Hence, for both models

C(Fm+1[f1, . . . , fm, n], x) = C(Fm[f1, . . . , fm], x),

and
L[Fm+1[f1, . . . , fm, n]] = L[Fm[f1, . . . , fm]].

In summary, the addition of stages does not require special treatment in the proposed
cascade learning framework. It suffices to append a neutral predictor to the cascade and
find the best update for this new stage. If this reduces the objective function of (41) further
than updating other stages, the new stage is automatically created and appended to the
cascade. In this way, the cascade grows organically, as a side effect of the risk optimization,
and there is no need for heuristics.

21

Saberian and Vasconcelos

Algorithm 5 FCBoost

Input: Training set S = {(x1, y1) . . . , (xn, yn)}, trade-off parameter η, sigmoid parameter
µ, and number of iterations N .
Initialization: Set m = 0 and f1(x) = n(x), e.g., using (57) for last-stage and (58) for
multiplicative cascade.
for t = 1 to N do

for k = 1 to m do

(α∗
k, g

∗
k) = BestStageUpdate(S, η, [f1, ...fm], k, µ).

end for

(α∗
m+1, g

∗
m+1) = BestStageUpdate(S, η, [f1, ...fm+1],m+ 1, µ).

for k = 1 to m do

Set L̂(k) = L [Fm(f1, .., fk + α∗
kg

∗
k, .., fm)] using (41).

end for

Set L̂(m+ 1) = L
[

Fm+1(f1, .., fm, fm+1 + α∗
m+1g

∗
m+1(x))

]

using (41).

Find k∗ = argmink∈{1,...,m+1} L̂(k).
Set fk∗ = fk∗ + α∗

k∗g
∗
k∗ .

if k∗ = m+ 1 then

Set m = m+ 1 .
Set fm+1(x) = n(x).

end if

end for

Output: decision rule: sgn[Fm(f1, . . . , fm)].

6. The FCBoost Cascade Learning Algorithm

In this section, we combine the contributions from the previous sections into the Fast
Cascade Boosting (FCBoost) algorithm, discuss its connections with the previous literature
and some interesting properties.

6.1 FCBoost

FCBoost is initialized with a neutral predictor. At each iteration, it finds the best update
g∗k(x) for each of the cascade stages and the best stage to add at the end of the cascade.
It then selects the stage k∗ whose update g∗k∗(x) most reduces the Lagrangian L[F]. If
k∗ is the newly added stage, a new stage is created and appended to the cascade. The
procedure is summarized in Algorithm 5. Note that the only parameters are the multiplier
η of (41), which encodes the relative importance of cascade speed vs. accuracy for the
cascade designer, and the sigmoid parameter µ that controls the smoothness of the Heaviside
approximation. In our implementation we always use µ = 5. Given these parameters,
FCBoost will automatically determine both the cascade configuration (number of stages
and number of weak learners per stage) and the predictor of each stage, so as to optimize
the trade-off between detection accuracy and complexity which is specified through η.

22

Boosting Detector Cascade

(a) (b)

Figure 2: Illustration of the different configurations produced by identical steps of (a) last-
stage and (b) multiplicative cascade learning.

6.2 Connections to the Previous Cascade Learning Literature

FCBoost supports a large variety of cascade structures. The cascade structure is defined by
the generator G of (28), since this determines the neutral predictor n(x), according to (56),
and consequently how the cascade grows as boosting progresses. The two cascade predictors
used in this work, last-stage and multiplicative, cover the two predominant cascade struc-
tures in the literature. The first is the independent stage (IS) structure, (Viola and Jones,
2001). In this structure stage predictors are designed independently,2 in the sense that the
learning of fk starts from an empty predictor which is irrespective of the composition of
the previous stages, fj , j < k. The second structure is the embedded stage (ES) structure
where predictors of consecutive stages are related by

fk+1(x) = fk(x) +w(x),

and w(x) is a single or linear combination of weak learners (Xiao et al., 2003). Under
this structure, each stage predictor contains the predictor of the previous stage, which is
augmented with some weak learners.

The connection between these structures and the models proposed in this paper can be
understood by considering the neutral predictors of the latter. For multiplicative cascades,
it follows from (58) that

fm+1(x) = 1 + αg(x),

and there is no dependence between consecutive stages. Hence, multiplicative cascades have
the IS structure. For last stage cascades, it follows from (57) that

fm+1(x) = fm(x) + αg(x).

If FCBoost always updates the last two stages, this produces a cascade with the ES struc-
ture. Since FCBoost is free to update any stage, it can produce more general cascades, i.e.,
a superset of the set of cascades with the ES structure.

It is interesting that two predictors with the very similar generators of (32) and (37)
produce very different cascade structures. This is illustrated in Figure 2, where we consider
the cascades resulting from the following sequence of operations:

2. Note that the predictors are always statistically dependent, since the role of hi+1 is to classify examples
not rejected by hi.

23

Saberian and Vasconcelos

• iteration 1: start form an empty classifier, create first stage.

• iteration 2: add a new stage.

• iteration 3: update first stage.

• iteration 4: add a new stage.

Note that while the last-stage cascade of a) has substantial weak learner sharing across
stages, this is not true for the multiplicative cascade of b), which is similar to the Viola and
Jones cascade (Viola and Jones, 2001).

6.3 Properties

Beyond these connections to the literature, FCBoost has various interesting properties as a
cascade boosting algorithm. First, its example weighing is very similar to that of adaboost
(Freund and Schapire, 1997). A comparison of (5) and (15) shows that FCBoost reweights
examples by how well they are classified by the current cascade. As in adaboost, this
is measured by the classification margin, but now with respect to the cascade predictor,
F , (margin yF) rather than a simple predictor f (margin yf). Second, the weak learner
selection rule of FCBoost is very similar to that of adaboost. While in (6) adaboost selects
the weak learner g that maximizes

1

|St|

∑

i

yiwig(xi),

in (52)-(53) FCBoost selects the stage k and weak learner g that maximize

∑

i

(

yiw(xi)bk(xi)

|St|
− η

ysiψk(xi)θk(xi)

|S−
t |

)

g(xi). (59)

When η = 0, the only significant difference is the inclusion of bk(xi) in (59). To understand
the role of this term note that, from (36) and (40), bk(xi) = 0 whenever γk(xi) = 0 in (30),
and ξk(xi) = 0 in (31). This implies that there is at least one stage j < k such that fj(xi) <
0, i.e., where xi is rejected. When this holds, bk(xi) = 0 prevents xi from influencing
the update of fk(x). This is sensible: since xi will not reach the kth stage, it should not
affect its learning. Hence, the coefficients bk(xi) can be seen as gating coefficients, which
prevent examples rejected by earlier stages from affecting the learning of stage k. If η 6= 0,
a similar role is played by θk(xi) in the second term of (59) since, from (44), θk(xi) = 0
whenever γk(xi) = 0. Thus, if xi is rejected by a stage j < k, its processing complexity is
not considered for any stage posterior to j. Due to the gating coefficients bk(xi) and θk(xi),
FCBoost emulates the bootstrapping procedure commonly used in cascade design. This is
a procedure that eliminates the examples rejected by each stage from the training set of
subsequent stages. These examples are replaced with new false positives (Viola and Jones,
2001; Sung and Poggio, 1998). While FCBoost emulates “example discarding” with the
gating coefficients bk(xi) and θk(xi), it does not seek new false positives. This still requires
the “training set augmentation” of bootstrapping.

24

Boosting Detector Cascade

A third interesting property of FCBoost is the complexity penalty (second term) of (59).
From (44) and (50) this is, up to constants,

− ysi γk(xi)e
fk(xi)C(Fk+1, xi)g(xi).

Given example xi and cascade stage k, all factors in this product have a meaningful in-
terpretation. First, since ysi γk(xi) is non-zero only for negative examples which have not
been rejected by earlier cascade stages (j < k), it acts as a selector of the false-positives
that reach stage k. Second, since fk(xi) measures how deeply xi penetrates the positive
side of the stage k classification boundary, efk(xi) is large for the false-positives that stage
k confidently assigns to the positive class. Third, since C(Fk+1, xi) is the complexity of
processing xi by the stages beyond k, it measures how deeply xi penetrates the cascade,
if not rejected by stage k. Finally, g(xi) is the label given to xi by weak learner g(x).
Since only g(xi) can be negative, the product is maximized when g(xi) = −1, γk(xi) = 1
and fk(xi) and C(Fk+1, xi) are as large as possible. Hence, the best weak learner is that
which, on average, declares as negatives the examples which 1) are false-positives of the
earlier stages, 2) are most confidently accepted as false-positives by the current stage, and
3) penetrate the cascade most deeply beyond this stage. This is intuitive, in the sense that
it encourages the selection of the weak learner that most contradicts the current cascade on
its most costly mistakes.

In summary, FCBoost is a generalization of adaboost with similar example weighting,
gating coefficients that guarantee consistency with the cascade structure, and a cost func-
tion that accounts for classifier complexity. This encourages the selection of weak learners
that correct the false-positives of greatest computational cost. It should be mentioned that
while we have used adaboost to derive FCBoost, similar algorithms could be derived from
other forms of boosting, e.g., logitboost, gentle boost (Friedman et al., 1998), KLBoost
(Liu and Shum, 2003) or float boost (Li and Zhang, 2004). This would amount to replac-
ing the exponential loss, (3), with other loss functions. While the resulting algorithms
would be different, the fundamental properties (example reweighing, additive updates, gat-
ing coefficients) would not. We next exploit this to develop a cost-sensitive extension of
FCBoost.

6.4 Cost-Sensitive FCBoost

While positive examples rejected by a cascade stage cannot be recovered by subsequent
stages, the cascade false positive rate can always be reduced through addition of stages.
Hence, in cascade learning, maintaining a high detection rate across stages is more critical
than maintaining a low false positive rate. This is difficult to guarantee with the risk of (1),
which is an upper bound on the error rate, treating misses and false positives equally. Several
approaches have been proposed to enforce asymmetry during cascade learning. One possibil-
ity is to manipulate the thresholds of the various detector stages to guarantee the desired de-
tection rate (Viola and Jones, 2001; Sochman and Matas, 2005; Luo, 2005). This is usually
sub-optimal, since boosting predictors are not well calibrated outside a small neighborhood
of the classification boundary (Mease and Wyner, 2008). Threshold tuning merely changes
the location of the boundary and can perform poorly (Masnadi-Shirazi and Vasconcelos,
2010). An alternative is to use cost sensitive boosting algorithms (Viola and Jones, 2002;

25

Saberian and Vasconcelos

Masnadi-Shirazi and Vasconcelos, 2007), derived from asymmetric losses that weigh miss-
detections more than false-positives, optimizing the cost-sensitive boundary directly. This
usually outperforms threshold tuning.

In this work we adopt the cost sensitive risk of

Rc
E(f) =

C

|S+
t |

∑

xi∈S
+
t

e−yif(xi) +
1− C

|S−
t |

∑

xi∈S
−
t

e−yif(xi)

=
∑

xi∈St

yci e
−yif(xi), (60)

where C ∈ [0, 1] is a cost factor,

yci =
C

|S+
t |
I(yi = 1) +

1− C

|S−
t |

I(yi = −1),

I(.) the indicator function, and the relative importance of positive vs. negative examples
is determined by the ratio C

1−C
(Viola and Jones, 2002). This leads to the cost-sensitive

Lagrangian

Lc[F] = Rc
E [F] +RC [F]. (61)

A derivation similar to that of (14) can be used to show that

< δRc
E [F], g >k= −

∑

i

yiy
c
iw(xi)bk(xi)g(xi), (62)

where w(xi) = e−yiF (xi) and bk(xi) is given by (36) for last-stage and by (40) for multiplica-
tive cascades. Finally, combining (61), (62), and (49),

< −δLc[F], g >k =
∑

i

(

yiy
c
iw(xi)bk(xi)− η

ysiψk(xi)θk(xi)

|S−
t |

)

g(xi). (63)

The cost-sensitive version of FCBoost replaces (51) with (63) in (52)-(53) and L by Lc

in (54).

6.5 Open Issues

One subtle difference between adaboost and FCBoost, with η = 0, is the feasible set of the
underlying optimization problems. Rewriting the FCBoost problem of (13) as

{

minf RE [f]
s.t : f ∈ ΩG,

(64)

where

ΩG = {f |∃f1, ...fm ∈ G such that f(x) = Fm[f1, . . . , fm](x) ∀x} .

and comparing (64) to (2), the two problems differ in their feasible sets, span(G) for
adaboost vs. ΩG for FCBoost. Since any f̂ ∈ span(G) is equivalent to a one-stage cascaded
predictor, it follows that f̂ ∈ ΩG and

span(G) ⊂ ΩG.

26

Boosting Detector Cascade

Hence, the feasible set of FCBoost is larger than that of adaboost, and FCBoost can, in
principle, find detectors of lower risk. Hence, all generalization guarantees of adaboost hold,
in principle, for cascades learned with FCBoost. There is, however, one significant difference.
Since span(G) is a convex set, the optimization problem of (2) is convex whenever RE(f)
is a convex function of f . This is the case for the adaboost risk, and adaboost is thus
guaranteed to converge to a global minimum. However, since ΩG can be a non-convex set,
no such guarantees exist for FCBoost. Hence, FCBoost can converge to a local minimum.
We illustrate this with an example in Section 7.1. In general, the convexity of ΩG depends on
the PC operator Fm and the set of weak learners G. There is currently little understanding
on what conditions are necessary to guarantee convexity.

7. Evaluation

In this section, we report on several experiments conducted to evaluate FCBoost. We
start with a set of experiments designed to illustrate the properties of the algorithm. We
then report results on its use to build face and pedestrian detectors with state-of-the-art
performance in terms of detection accuracy and complexity. In all cases, the training set for
face detection contained 4, 500 faces (along with their flipped replicas) and 9, 000 negative
examples, of size 24 × 24 pixels, while pedestrian detection relied on a training set of
2, 347 positive and 2, 000 negatives examples, of size 72 × 30, from the Caltech Pedestrian
data set (Dollár et al., 2012). All weak learners were decision-stumps on Haar wavelets
(Viola and Jones, 2001).

7.1 Effect of η

We started by studying the impact of the Lagrange multiplier η, of (41), on the accuracy
vs. complexity performance of FCBoost cascades. The test set consisted of 832 faces (along
with their flipped replicas) and 1, 664 negatives. All detectors were trained for 50 iterations.
The unit computational cost was set to the cost of evaluating a new Haar feature. This
resulted in a cost of 1

5 units for feature recycling, i.e., λ = 1
5 in (47). Figure 3 quantifies

the structure of the cascades learned by FCBoost with η = 0 and η = 0.04: multiplicative
in a) and last-stage in b). The top plots summarize the number of features assigned to
each cascade stage, and those at the bottom the computational cost per stage. Note that
since, from (57), the neutral predictor of the last-stage cascade is its last stage, each of
the last-stage cascade stages benefits from the features evaluated in the previous stages.
Hence, as shown in the top plot of Figure 3-b, the number of weak learners per stage is
monotonically increasing. However, because most features are recycled, the cost is still
dominated by the early stages, when η = 0. With respect to the impact of η, its is clear
that, for both structures, a small η produces short cascades whose early stages contain
many weak learners. On the other hand, a large η leads to much deeper cascades, and a
more uniform distribution of weak learners and computation. This is sensible, since larger
η place more emphasis on computational efficiency and this requires that the early stages,
which tend to be evaluated for most examples, be very efficient. Hence, long cascades with
a few weak learners per stage tend to be computationally more efficient than short cascades
with many learners per stage.

27

Saberian and Vasconcelos

0 5 10 15 20
0

10

20

30

40

50

Stage Number

N
um

be
r

of
 F

ea
tu

re
s

η = 0

η = 0.04

0 5 10 15 20 25 30
0

10

20

30

40

50

Stage Number

N
um

be
r

of
 F

ea
tu

re
s

η = 0

η = 0.04

0 5 10 15 20
0

10

20

30

40

50

Stage Number

C
os

t o
f E

va
lu

at
io

n

η = 0

η = 0.04

0 5 10 15 20 25 30
0

5

10

15

20

Stage Number
C

os
t o

f E
va

lu
at

io
n

η = 0

η = 0.04

(a) (b)

Figure 3: Number of features (top) and computational cost (bottom) per stage of an FC-
Boost cascade: (a) multiplicative, (b) last-stage.

The accuracy vs. complexity trade-off of these cascades was compared to those of a non-
cascaded adaboost detector and a cascade of embedded stages derived from this detector
(Masnadi-Shirazi and Vasconcelos, 2007). This converts the detector into a cascade by in-
serting a rejection point per weak learner. The resulting cascade has embedded stages which
add a single weak learner to their predecessors and is equivalent to the chain boost cascade
(Xiao et al., 2003). Figure 4 depicts the trade-off between computation and accuracy of
adaboost, chain boost, and FCBoost cascades with η ∈ [0, 0.04]. The left-most (right-most)
point on the FCBoost curves corresponds to η = 0 (η = 0.04). adaboost and ChainBoost
points were obtained by limiting the number of weak learners, with a single weak learner (full
detector) for the right-most (left-most) point. Several observations can be made from the
figure. First, as expected, increasing the trade-off parameter η produces FCBoost cascades
with less computation and higher error. Second, FCBoost has a better trade-off between
complexity and accuracy (curves closer to the origin). Third, among FCBoost models,
last-stage cascades have uniformly better trade-off than their multiplicative counterparts.
Since last-stage are generalized embedded cascades, this confirms previous reports on the
advantages of embedded over independent stages (Pham et al., 2008; Xiao et al., 2003). Fi-
nally, it is interesting to note that, when η = 0, the Lagrangian of (41) is equivalent to the
adaboost risk, i.e., FCBoost and adaboost minimize the same objective. However, due to
their different feasible sets, they can learn very different detectors (see Section 6.5). While

28

Boosting Detector Cascade

0.04 0.08 0.12 0.16 0.18
0

10

20

30

40

50

Error Rate
C

os
t o

f E
va

lu
at

io
n

AdaBoost

ChainBoost

Multiplicative

Last Stage

Figure 4: Computational cost vs. error rate of the detectors learned with adaboost, chain
boost, and FCBoost with the last-stage and multiplicative structures.

adaboost FCBoost+last-stage FCBoost+multiplicative

Err. rate 4.03% 4.51% 4.15%

Eval. cost 50 11.74 42.54

Table 1: Performance comparison between adaboost and FCBoost, for η = 0.

the larger feasible set of FCBoost suggests that it should produce detectors of smaller risk
than adaboost, this did not happen in our experiments.

Table 1 summarizes the error and cost of adaboost and the two FCBoost methods for
η = 0. Note that the adaboost detector has a slightly lower error. The weaker accuracy of
the FCBoost detectors suggests that the latter does get trapped in local minima. This is,
in fact, intuitive as the decision to add a cascade stage makes it impossible for the gradient
descent procedure to revert back to a non-cascaded detector. By making such a decision,
FCBoost can compromise the global optimality of its solution, if the global optimum is a
non-cascaded detector. Interestingly, FCBoost sometimes decides to add stages even when
η = 0 (see Figure 3). As shown in Table 1, this leads to a slightly more error-prone but
much more efficient detector than adaboost. In summary, even without pressure to minimize
complexity (η = 0), FCBoost may trade-off error for complexity. This may be desirable or
not, depending on the application. In the experiment of Table 1, FCBoost seems to make
sensible choices. For the last-stage structure, it trades a small increase in error (0.48%) for
a large decrease in computation (76.5%). For the multiplicative structure, it trades-off a
very small increase in error (0.12%) for a moderate (16%) decrease in computation.

7.2 Cost-Sensitive FCBoost

We next consider the combination of FCBoost and the cost sensitive risk of (60). Since
the advantages of cost-sensitive boosting over threshold tuning are now well established
(Viola and Jones, 2002; Masnadi-Shirazi and Vasconcelos, 2010), we limit the discussion to
the effect of the cost factor C on the behavior of FCBoost cascades. Cascaded face detectors
were learned for cost factors C ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}. Figure 5 a) presents
the trade-off between detection and false positive rate for last-stage and multiplicative

29

Saberian and Vasconcelos

0 0.2 0.4 0.6 0.8
0.84

0.88

0.92

0.96

1

False Positive Rate

D
et

ec
tio

n
R

at
e

Last Stage
Multiplicative

0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

C

E
va

lu
at

io
n

C
os

t

Last Stage
Multiplicative

(a) (b)

Figure 5: Performance of cascades learned with cost-sensitive FCBoost, using different cost
factors C. (a) ROC curves, (b) computational complexity.

cascades. In both cases, the leftmost (rightmost) point corresponds to C = 0.5 (C = 0.99).
Figure 5 b) presents the equivalent plot for computational cost. Several observations can
be made. First, as expected, larger cost factors C produce detectors of higher detection
and higher false-positive rate. Second, they lead to cascades of higher complexity. This
is intuitive since, for large cost factors, FCBoost aims for a high detection rate and is
very conservative about rejecting examples. Hence, many negatives penetrate deep into
the cascade, and computation increases. Third, comparing the curves of the last-stage and
multiplicative cascades, the former again has better performance. In particular, last-stage
cascades combine higher ROC curves in Figure 5 a) with lower computational cost in Figure
5 b).

7.3 Face and Pedestrian Detection

Over the last decade, there has been significant interest in the problem of real-time object
detection from video streams. In particular, the sub-problems of face and pedestrian de-
tection have been the focus of extensive research, due to the demand for face detection in
low-power consumer electronics (e.g., cameras or smart-phones) and pedestrian detection
in intelligent vehicles. In this section, we compare the performance of FCBoost cascades
with those learned by several state of the art methods in the face and pedestrian detection
literatures.

We start with face detection, where cascaded detectors have become predominant, com-
paring FCBoost to the method of Viola and Jones (VJ) (Viola and Jones, 2001), Wald
boost (Sochman and Matas, 2005) and multi-exit (Pham et al., 2008). Since extensive re-
sults on these and other methods are available on the MIT-CMU test set, all detectors were
evaluated on this data set. The methods above have been shown to outperform a number
of other cascade learning algorithms (Pham et al., 2008) and, to the best of our knowledge,
hold the best results in this data set. In all cases, the target detection rate was set to
DT = 95%. For Wald boost, multi-exit, and VJ, the training set was bootstrapped when
a new stage was added to the cascade, for FCBoost when the false positive rate dropped
below 95%. For VJ and multi-exit cascades, which require the specification of the number
of cascade stages and a target false-positive and detection rate per stage, we used 20 stages,

30

Boosting Detector Cascade

100 200 300 400 500
0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of False positives

D
et

ec
tio

n
ra

te

VJ(45.33)
WaldBoost(28.80)
Multi−Exit(80.73)
FCBoost(11.38)

Figure 6: ROCs of various face detectors on MIT-CMU. The number in the legend is the av-
erage evaluation cost, i.e., average number of features evaluated per sub-window.

and the popular strategy of setting the false positive rate to 50% and the detection rate

to D
1

20

T . For FCBoost we used a last-stage cascade, since this structure achieved the best
balance between accuracy and speed in the previous experiment. We did not attempt to
optimize η, simply using η = 0.02. The cost factor C was initialized with C = 0.99. If after
a boosting update the cascade did not meet the detection rate, C was increased to

Cnew =
Cold + 1

2
. (65)

This placed more emphasis on avoiding misses than false positives, and was repeated until
the updated cascade satisfied the rate constraint. The final value of C was used as the
initial value for the next boosting update.

Figure 6 show the ROCs of all detectors. The average evaluation cost, i.e., average
number of features evaluated per sub-window, is shown in the legend for each method.
Note that the FCBoost cascade is simultaneously more accurate and faster than those of
all other methods. For example, at 100 false positives, FCBoost has a detection rate of
91% as opposed to 88% for multi-exit, 83% for VJ, and 80% for Wald boost. With regards
to computation, FCBoost is 7.1, 4, and 2.5 times faster than multi-exit, VJ, and Wald
boost, respectively. Overall, when compared to the FCBoost cascade, the closest cascade
in terms of detection rate (multi-exit, 3% drop) is significantly slower (7 times) and the
closest cascade in terms of detection speed (Wald boost, 2.5 times slower) has a very poor
detection rate (11% smaller).

We next considered the problem of pedestrian detection, comparing results to a large
set of state-of-the-art pedestrian detectors on the Caltech Pedestrian data set (Dollár et al.,
2012). In this literature, it is well known that a good representation for pedestrians must
account for both edge orientation and color (Dalal and Triggs, 2005; Dollár et al., 2009).
Similarly to Dollar et al. (Dollár et al., 2009), we adopted an image representation based on
a 10 channel decomposition. This included 3 color channels (YUV color space), 6 gradient
orientation channels, and a gradient magnitude channel. In all other aspects, the cascade

31

Saberian and Vasconcelos

10
−3

10
−2

10
−1

10
0

10
1

10
2

.05

.10

.20

.30

.40

.50

.64

.80
1

false positives per image

m
is

s
ra

te

86% VJ(2.24)
38% HOG(4.18)
59% FtrMine(12.5)
77% Shapelet(19.60)
72% PoseInv
43% MultiFtr(13.89)
39% HikSvm(5.41)
50% LatSvm−V1(2.55)
28% LatSvm−V2(1.59)
30% ChnFtrs(0.85)
33% FPDW(0.15)
36% Pls(55.56)
23% HogLbp(16.13)
23% FCBoost(0.80)
36% MultiFtr+CSS(37.4)
16% MultiFtr+Motion(50)

Figure 7: Accuracy curves and complexity of various pedestrian detectors on the Caltech
data set. Legend: (left) miss rates at 0.1 FPPI, (right) average time, in seconds,
required to process 480× 640 frame.

architecture was as before, e.g., using Haar wavelet features and decision stumps as weak
learners, the previously used values for parameters DT , and η, etc. When compared to
the face detection experiments, the only difference is that the set of weak learners was
replicated for each channel. At each iteration, FCBoost chose the best weak learner and
the best channel to add to the cascade predictor. The performance of the FCBoost cascade
was evaluated with the toolbox of (Dollár et al., 2012). Figure 7 compares its complexity
and curve of miss-detection rate vs number of false positives per image (FPPI) to those
of a number of recent pedestrian detectors. The comparison was restricted to the popular
near scale-large setting, which evaluates the detection of pedestrians with more than 100
pixels in height. The numbers shown in the left of the legend summarize the detection
performance by the miss rate at 0.1 FPPI. The numbers shown in the right indicated the
average time, in seconds, required for processing a 480 × 640 video frame. Note that the
evaluation is not restricted to fast detectors, including the most popular architectures for
object detection in computer vision, such as the HOG detector (Dalal and Triggs, 2005) or
the latent SVM (Felzenszwalb et al., 2010). For more information on the curves and other
methods the reader is referred to Dollár et al. (2012).

Two sets of conclusions can be derived from these results. First, they confirm the ob-
servation that the FCBoost cascade significantly outperforms previous cascaded detectors.
A direct comparison is in fact possible against the ChnFtrs method (Dollár et al., 2009).
This work introduced the multi channel features that we adopt but uses the SoftCascade al-
gorithm (Bourdev and Brandt, 2005) for cascade learning. The resulting detector is among
the top methods on this data set, missing 30% of the pedestrians at 0.1 FPPI and using
0.85 seconds to process a frame. Nevertheless, the FCBoost cascade has substantially bet-
ter accuracy, missing only 23% of the pedestrians at 0.1 FPPI, and requires less time (a
6% speed up). Second, the results of Figure 7 show that the FCBoost cascade is one of
the most accurate pedestrian detectors in the literature, and significantly faster than the

32

Boosting Detector Cascade

detectors of comparable accuracy. In fact, only two detectors have been reported to achieve
equivalent or lower miss rates. The Hog-Lbp detector (Wang et al., 2009) has the same
miss rate (23% at 0.1 FPPI) but is 20 times slower. The MultiFtr+Motion (Walk et al.,
2010) detector has a smaller miss rate of 16% (at 0.1 FPPI) but is 62 times slower (almost
1 minute per frame). The inclusion of this method in Figure 7 is somewhat unfair, since
it is the only approach that exploits motion features. All other detectors, including the
FCBoost cascade, operate on single-frames. We did not investigate the impact of adding
motion features to FCBoost. Finally, it should be noted that the FCBoost cascade could
be enhanced with various computational speed ups proposed in the design of the FPDW
detector (Dollár et al., 2010). This is basically a fast version of the ChnFtrs detector, us-
ing several image processing speed-ups to reduce the time necessary to produce the image
channels on which the classifier operates. These speed-ups lead to a significant increase in
speed (0.15 vs 0.85 seconds) at a marginal cost in terms of detection accuracy (33% vs. 30%
miss rate at 0.1 FPPI). Since these enhancements are due to image processing, not better
cascade design, we have not considered them in our implementation. We would expect,
however, to see similar computational gains in result of their application to the FCBoost
cascade.

8. Conclusions

In this work we have addressed the problem of detector cascade learning by introducing
the FCBoost algorithm. This algorithm optimizes a Lagrangian risk that accounts for both
detector speed and accuracy with respect to a predictor that complies with the sequential
decision making structure of the cascade architecture. By exploiting recursive properties
of the latter, it was shown that many cascade predictors can be derived from generator
functions, which are cascade predictors of two stages. Variants of FCBoost were derived
for two members of this family, last-stage and multiplicative cascades, which were shown to
generalize the popular independent and embedded stage cascade architectures. The concept
of neutral predictors was exploited to integrate the search for cascade configuration into the
boosting algorithm. In result, FCBoost can automatically determine 1) the number of cas-
cade stages and 2) the number of weak learners per stage, by minimizing the Lagrangian
risk. It was also shown that FCBoost generalizes adaboost, and is compatible with exist-
ing cost-sensitive extensions of boosting. Hence, it can be used to learn cascades of high
detection rate. Experimental evaluation has shown that the resulting cascades outperform
current state-of-the-art methods in both detection accuracy and speed.

Acknowledgments

This work was supported by NSF grant (NSF IIS-1208522) and the Technology Development
Program for Commercializing System Semiconductor funded By the Ministry of Trade,
industry & Energy(MOTIE, Korea), [No. 10041126, Title: International Collaborative
R&BD Project for System Semiconductor].

33

Saberian and Vasconcelos

References

P. Bartlett and M. Traskin. Adaboost is consistent. Journal of Machine Learning Research,
8:2347–2368, December 2007.

L. Bourdev and J. Brandt. Robust object detection via soft cascade. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, pages 236–243, 2005.

S. Brubaker, M. Mullin, and J. Rehg. On the design of cascades of boosted ensembles for
face detection. International Journal of Computer Vision, 77:65–86, 2008.

G. Carneiro, B. Georgescu, S. Good, and D. Comaniciu. Detection and measurement of
fetal anatomies from ultrasound images using a constrained probabilistic boosting tree.
IEEE Transactions on Medical Imaging, 27(9):1342 –1355, sept. 2008.

M. Collins, R. Schapire, and Y. Singer. Logistic regression, adaboost and Bregman distances.
Machine Learning, 48(1-3):253–285, 2002.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, pages 886–893, 2005.

P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel features. In Proceedings of
British Machine Vision Conference, 2009.

P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian detector in the west. In
Proceedings of British Machine Vision Conference, 2010.

P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the
state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34
(4):743–761, 2012.

S. Du, N. Zheng, Q. You, Y. Wu, M. Yuan, and J. Wu. Rotated haar-like features for face
detection with in-plane rotation. In Proceedings of international conference on Interactive
Technologies and Sociotechnical Systems, pages 128–137, 2006.

J. Duchi and Y. Singer. Boosting with structural sparsity. Proceedings of the International
Conference on Machine Learning, pages 297–304, 2009.

M. Dundar and J. Bi. Joint optimization of cascaded classifiers for computer aided detection.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2007.

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with
discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2010.

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Comp. and Sys. Science, 1997.

J. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29:1189–1232, 1999.

34

Boosting Detector Cascade

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view
of boosting. Annals of Statistics, 28, 1998.

C. Lampert. An efficient divide-and-conquer cascade for nonlinear object detection. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages
1022 –1029, 2010.

C. Lampert, M. Blaschko, and T. Hofmann. Efficient subwindow search: A branch and
bound framework for object localization. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 2129–2142, 2009.

L. Lefakis and F. Fleuret. Joint cascade optimization using a product of boosted classifiers.
In Proceedings of the Neural Information Processing Systems Conference, 2010.

S. Li and Z. Zhang. Floatboost learning and statistical face detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(9):1112–1123, 2004.

R. Lienhart and J. Maydt. An extended set of haar-like features for rapid object detection.
In Proceedings of International Conference on Image Processing, pages I–900 – I–903
vol.1, 2002.

C. Liu and H. Shum. Kullback-Leibler boosting. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 587–594, 2003.

H. Luo. Optimization design of cascaded classifiers. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 480–485, 2005.

H. Masnadi-Shirazi and N. Vasconcelos. High detection-rate cascades for real-time object
detection. In Proceedings of International Conference on Computer Vision, volume 2,
pages 1–6, 2007.

H. Masnadi-Shirazi and N. Vasconcelos. Cost-sensitive boosting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 99, 2010.

L. Mason, J. Baxter, P. Bartlett, and M. Frean. Functional gradient techniques for com-
bining hypotheses. Advances in Large Margin Classifiers, pages 1221–246, 2000.

D. Mease and A. Wyner. Evidence contrary to the statistical view of boosting. Journal of
Machine Learning Research, 9:131–156, 2008.

C. Messom and A. Barczak. Fast and efficient rotated haar-like features using rotated inte-
gral images. In Proceedings of the Australasian Conference on Robotics and Automation,
2006.

M. Pham and T. Cham. Fast training and selection of haar features using statistics in
boosting-based face detection. In Proceedings of IEEE International Conference on Com-
puter Vision, pages 1–7, 2007.

M. Pham, V. Hoang, and T. Cham. Detection with multi-exit asymmetric boosting. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 1
– 8, 2008.

35

Saberian and Vasconcelos

M. Pham, Y. Gao, V. Hoang, and T. Cham. Fast polygonal integration and its application
in extending haar-like features to improve object detection. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 942 –949, 2010.

F. Porikli. Integral histogram: a fast way to extract histograms in cartesian spaces. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, volume 1,
pages 829 – 836, 2005.

V. Raykar, B. Krishnapuram, and S. Yu. Designing efficient cascaded classifiers: Tradeoff
between accuracy and cost. In Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 853–860, 2010.

D. Rumelhart, G. Hinton, and R. Williams. Example based learning for view-based human
face detection. Nature, pages 533–536, 1968.

M. Saberian and N. Vasconcelos. Boosting classifer cascades. In Proceedings of the Neural
Information Processing Systems Conference, 2010.

R. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3):297–336, 1999.

H. Schneiderman. Feature-centric evaluation for efficient cascaded object detection. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, volume 2,
pages 29–36, 2004.

C. Shen, P. Wang, and H. Li. Lacboost and fisherboost: optimally building cascade classi-
fiers. In Proceedings of European Conference on Computer Vision, pages 608–621, 2010.

C. Shen, S. Paisitkriangkrai, and J. Zhang. Efficiently learning a detection cascade with
sparse eigenvectors. IEEE Transactions on Image Processing, 20(1):22 –35, jan. 2011.

J. Sochman and J. Matas. Waldboost - learning for time constrained sequential detection.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages
150–157, 2005.

J. Sun, J. Rehg, and A. Bobick. Automatic cascade training with perturbation bias. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, volume 2,
pages 276–283, 2004.

K. Kay Sung and T. Poggio. Example based learning for view-based human face detection.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 20:39–51, 1998.

O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via classification on riemannian
manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1713
–1727, 2008.

S. Vijayanarasimhan and K. Grauman. Efficient region search for object detection. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages
1401 –1408, 2011.

36

Boosting Detector Cascade

P. Viola and M. Jones. Robust real-time object detection. Workshop on Statistical and
Computational Theories of Vision, 2001.

P. Viola and M. Jones. Fast and robust classification using asymmetric adaboost and a de-
tector cascade. In Proceedings of the Neural Information Processing Systems Conference,
pages 1311–1318, 2002.

S. Walk, N. Majer, K. Schindler, and B. Schiele. New features and insights for pedes-
trian detection. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pages 1030–1037, 2010.

X. Wang, T. Han, and S. Yan. An hog-lbp human detector with partial occlusion handling.
In Proceedings of IEEE International Conference on Computer Vision, pages 32–39, 2009.

J. Wu, S. Brubaker, M. Mullin, and J. Rehg. Fast asymmetric learning for cascade face
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3:369–382,
2008.

R. Xiao, L. Zhu, and H. Zhang. Boosting chain learning for object detection. In Proceedings
of International Conference on Computer Vision, pages 709 –71, 2003.

R. Xiao, H. Zhu, H. Sun, and X. Tang. Dynamic cascades for face detection. In Proceedings
of International Conference on Computer Vision, pages 1 – 8, 2007.

T. Zhang. Adaptive forward-backward greedy algorithm for learning sparse representations.
IEEE Transactions on Information Theory, 57(7):4689 –4708, july 2011.

Q. Zhu, M. Yeh, K. Cheng, and S. Avidan. Fast human detection using a cascade of
histograms of oriented gradients. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pages 1491 – 1498, 2006.

37

	Introduction
	Prior Work
	The Problems of Cascade Learning
	Previous Solutions

	An Extension of Adaboost for the Design of Classifier Cascades
	Boosting
	Cascade Boosting

	The Structure of Cascade Predictors
	Cascade Predictors
	Recursive Implementation
	Some Definitions
	Last Stage Cascades
	Multiplicative Cascades

	Learning the Cascade Configuration
	Complexity Loss
	Boosting with Complexity Constraints
	Growing a Detector Cascade

	The FCBoost Cascade Learning Algorithm
	FCBoost
	Connections to the Previous Cascade Learning Literature
	Properties
	Cost-Sensitive FCBoost
	Open Issues

	Evaluation
	Effect of
	Cost-Sensitive FCBoost
	Face and Pedestrian Detection

	Conclusions

