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In query-by-semantic-example image retrieval, images are ranked by similarity of semantic descriptors.
These descriptors are obtained by classifying each image with respect to a pre-defined vocabulary of
semantic concepts. In this work, we consider the problem of improving the accuracy of semantic descrip-
tors through cross-modal regularization, based on auxiliary text. A cross-modal regularizer, composed of
three steps, is proposed. Training images and text are first mapped to a common semantic space. A
regularization operator is then learned for each concept in the semantic vocabulary. This is an operator
which maps the semantic descriptors of images labeled with that concept to the descriptors of the
associated texts. A convex formulation of the learning problem is introduced, enabling the efficient
computation of concept-specific regularization operators. The third step is the selection of the most
suitable operator for the image to regularize. This is implemented through a quantization of the semantic
space, where a regularization operator is associated with each quantization cell. Overall, the proposed
regularizer is a non-linear mapping, implemented as a piecewise linear transformation of the semantic
image descriptors to regularize. This transformation is a form of cross-modal domain adaptation. It is
shown to achieve better performance than recent proposals in the domain adaptation literature, while
requiring much simpler optimization.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Image representation is a central component of computer vision
problems such as image classification or content-based image
retrieval (CBIR). In this context, the design of visual features has
been a subject of substantial interest. Early representations relied
on explicit representation of low-level image properties such as col-
or, texture, or shape, through color histograms [1], color moments
[2,3], Gabor wavelets [4], Fourier features [5], stochastic models
[6], or shape contexts [7], among others. More recently, substantial
effort has been devoted to the extension and robustification of
these representations, through operations like normalization and
spatial pooling, leading to modern descriptors such as SIFT [8],
HoG [9], SURF [10], spatial pyramids [11], or Fisher vectors [12].

It was also realized, early on, that one of the limitations of these
representations is a semantic gap [13] between strict visual similar-
ity, i.e. similarity in terms of patterns color or texture, and human
judgments of image similarity. This spurred significant interest in
the development of representations that account for semantic
abstraction [14–22]. In CBIR, such representations are designed
by identifying a vocabulary of concepts of interest for the retrieval
operation and learning classifiers for the detection of these con-
cepts. Images are then classified and mapped to a space where
each feature is a score for the detection of a concept. Several meth-
ods have been proposed to implement this approach, under differ-
ent terminology. In this work, we adopt the framework of [18],
which refers to the representation as a semantic representation,
and relies on the vector of posterior probabilities of the image under
the concepts in the vocabulary, as semantic feature vector. This
feature vector is denoted a semantic multinomial (SMN). As
illustrated in Fig. 1, this representation maps each image into a
point on the probability simplex. It should be noted that other
implementations of semantic representation have been proposed
in the literature, e.g. the query-by-example semantic retrieval
method of [17], the classeme representation of [21], or the object
bank of [22].

The representation of images in a semantic space has several
advantages. First, the generalization from low-level features to
semantic concepts enables similarity measures that correlate
much better with the expectations of CBIR users [15,18,23].
Second, because semantic features are, by definition, discriminant
for tasks like image categorization, the semantic representation
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Fig. 1. An excerpt from an article of the ‘‘Warfare’’ class from the Wikipedia dataset, with the corresponding image (middle). Left: representation of the image component of
various articles from the dataset in a semantic space of three concepts (‘‘History’’, ‘‘Royalty’’ and ‘‘Warfare’’). Different colors correspond to different article classes (black for
‘‘Warfare’’, blue for ‘‘Royalty’’, and red for ‘‘History’’). Right: similar representation for the text components. Note that the concept probability estimates are much noisier for
images than text. In result, the image semantics are substantially more ambiguous than the text semantics. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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enables the solution of these tasks with low-dimensional classifiers
[24,25]. Third, the semantic representation is naturally aligned
with recent computer vision interest on contextual modeling
[26–30]. This is of importance for tasks such as object recognition,
where the detection of contextually related objects has been
shown to improve the detection of certain objects of interest
[31–33], or semantic segmentation, where the coherence of seg-
ment semantics can be exploited to achieve more robust segmen-
tations [34–36]. Finally, due to their abstract nature, semantic
spaces enable a unified representation for data from different con-
tent modalities, e.g. images, text, or audio. This opens up a new set
of possibilities for multimedia processing, enabling operations
such as cross-modal retrieval, where an image is used to search a
database of texts and vice versa [37], or where an audio clip is used
to rank a set of images [38].

In this work, we exploit this support for cross-modal processing
to design an improved image representation for CBIR. The basic
idea is to leverage the fact that most images exist in a rich multi-
modal context, e.g. web-pages, which provide contextual informa-
tion about the image content. In fact, some of this information may
be much easier to model or classify than the image itself. For exam-
ple, text classifiers tend to have higher accuracy than state-of-the-
art image classifiers. Due to this, an SMN inferred from an image is
likely to be more noisy than an SMN derived from an associated
text document. This is illustrated in Fig. 1, where SMNs derived
from images scatter through the semantic space much more than
those derived from text.

A question that arises naturally is whether it would be possible
to exploit the presence of this text to denoise the semantic repre-
sentation of the image. One possibility would be to simply replace
the image SMN with the associated text SMN. This would reduce to
the cross-modal retrieval scheme of [37], where a query image is
matched to a database of texts. While effective, this solution is
not fully general, since it assumes the availability of text for all
images in the CBIR database. A more general solution is to collect
a dataset of image-text pairs and learn a transformation that maps
the ambiguous image semantics on the left of Fig. 1 to the less
ambiguous text semantics on the right. This transformation can
then be applied to images that have no complementary text. Be-
cause this denoising operation is likely to enable better generaliza-
tion for all retrieval operations we denote it as a regularization of
the semantic image representation. Since text information is used
to regularize visual information, the process is denoted cross-modal
regularization. The denoised semantic representation is denoted as
regularized image semantics.

We propose a cross-modal regularizer of image semantics (RIS)
composed of three steps, illustrated in Fig. 2. Training images and
texts are first mapped to the semantic space. A regularization oper-
ator is then learned for each concept in the semantic vocabulary.
This operator maps SMNs of images labeled with that concept to
the SMNs of the associated texts. Because the transformation is lin-
ear on an affine space (probability simplex), and the objective func-
tion is to minimize the mean squared error of the mapping, the
problem can be framed in a convex formulation, which lends itself
to efficient optimization. The process results in a set of concept-
specific regularization operators. The final step is a procedure for
the selection of the most suitable regularization operator for the
image to regularize. This can be seen as a quantization of the prob-
ability simplex, where each quantization cell is associated with a
regularization operator. Overall, the proposed regularizer is a
non-linear mapping, implemented as a piecewise linear transfor-
mation of the image SMN to regularize. This is shown to enable
better performance than other recent proposals in the domain
adaptation literature [39–43], and requires a much simpler
optimization.

The paper is organized as follows. Section 2 discusses previous
related work. Section 3 reviews the fundamental concepts of
semantic representation. The proposed operator is then introduced
in Section 4. Section 5 presents an extensive experimental evalua-
tion of the regularizer in the context of CBIR. Finally, some conclu-
sions are presented in Section 6. A preliminary version of this work
appeared in [44].
2. Related work

CBIR has been a subject of research for many years. Popular
retrieval systems such as QBIC [45] and Virage [46], sprung the first
efforts for Internet-scale image search engines such as Visualseek
[47] and Webseer [48]. These systems were based on similarity
of low-level descriptors accounting for properties such as image
color and texture. Semantic representations were first introduced
in the video classification literature [14–16] and then extended
to the CBIR literature. In this context, one of the first and most
comprehensive efforts towards semantic representation was the
ImageScape system [49]. [17] Extended the popular query-
by-example retrieval paradigm to the realm of semantic represen-
tations. Many other proposals have since been made in the CBIR,
scene classification, object recognition, and video understanding
literatures [18,21,22]. Some of these apply to special domains or
specific sets of semantic concepts. For example, the space of
attributes [19,50,20] is a mid-level semantic representation that
has enjoyed substantial popularity in recent years [51–53,28,30].



Fig. 2. Proposed cross-modal regularizer of image semantics. Images and text are first mapped to the semantic space, using a set of classifiers. A regularization operator is
learned per concept in the semantic vocabulary. The probability simplex is finally quantized and each of these operators assigned to a quantization cell. After regularization,
images labeled with the same concept tend to cluster in a subspace of the simplex. This contains the vertices of the simplex associated with the concept and its contextually
related concepts. As before, different colors correspond to images labeled with different concepts. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Recently, deep convolutional neural networks have gained sub-
stantial popularity in the task of large scale visual recognition [54],
including scenarios of joint image-text embeddings [55,56].

The starting point for this work is the query-by-semantic-exam-
ple retrieval paradigm of [18]. This introduced the SMN image rep-
resentation and extended the minimum probability of error
retrieval framework of [57] to the semantic domain. It consists of
retrieving images by similarity of the associated SMNs. This was
demonstrated to significantly improve the performance of the clas-
sical query-by-visual-example, where images are matched by simi-
larity of visual descriptors [18]. It should be noted, however, that
most of the ideas now proposed could be applied to most other
semantic image representations in the literature. The question that
we now investigate is whether it is possible to improve any such
semantic representation by taking advantage of additional data
modalities. In particular, whether given a training set of images
and text, it is possible to learn a transformation that denoises the
semantic representation of unseen images. This is expected to fur-
ther improve QBSE performance.

Since it leverages text to improve image retrieval, cross-modal
regularization is a form of transfer learning. This consists of trans-
ferring information from an auxiliary dataset to regularize a learn-
ing operation on a target dataset. Transfer learning is useful when
learning is poorly constrained in the target domain, e.g. when too
little training data is available. Several forms of transfer learning
have been proposed. The most popular is probably semi-supervised
learning [58], where a small set of labeled target data is augmented
by a large auxiliary corpus of unlabeled data. These methods as-
sume that the statistics of the target and auxiliary datasets are sim-
ilar and are not directly applicable to cross-modal regularization. A
second form is multi-task learning [59], where a common model
and training data are shared for the solution of two or more learn-
ing tasks, e.g. the simultaneous classification of images and text.
This is again unlike cross-modal regularization, where the goal is
to learn improved image classifiers only. No text classification is
performed after learning.

A third form of transfer learning is model adaptation, where aux-
iliary data is used to regularize the parameters of a target model,
which can be either generative [60–65] or discriminative [66–70].
Although this is sometimes denoted domain adaptation, the latter
usually refers to methods that regularize the target feature space,
rather than the models themselves. This is frequently implemented
by learning a feature transformation that maximizes the similarity
of feature vectors from target and auxiliary domains [71–73,41,
74,75]. Some methods have also been proposed to implement both
domain and model adaptation [42]. The proposed approach to
cross-modal regularization can be seen as a form of domain
adaptation, although it has significant differences with respect to
previous implementations of the former.

First, while domain adaptation assumes more auxiliary than
target data, this is not the case for cross-modal regularization.
Here, the problem is instead that data from the two modalities
has different degrees of semantic ambiguity: cross-modal regulari-
zation is useful even if there is infinite image data. Second, most
domain adaptation methods assume that auxiliary and target
domains produce data of the same type, e.g. images taken under
different views or from different datasets. This simplifies the prob-
lem in two ways. One, it enables simplifying assumptions, e.g. the
existence of a smooth path through a sequence of subspaces
between the auxiliary and target domains [73,41], that does not
hold for cross-modal regularization. Another, it implies the
absence of a semantic gap between the two domains, leading to
a simpler correspondence problem than that of cross-modal regu-
larization. This assumption contradicts the essence of cross-modal
regularization, where the goal is to leverage the smaller semantic
ambiguity of text to regularize image classification.

Perhaps due to this, the notion of performing regularization in a
semantic space has received little attention in the literature.
Instead, domain adaptation is usually implemented through a
global transformation between low-level features in the auxiliary
and target domains. This is the case even for the few approaches
previously proposed for cross-modal domain adaptation using
images and text [43,76]. These methods simply learn a feature
transformation between the two spaces, denoted a translator, from
co-occurrence counts of visual and text words. While global
low-level transformations can be used for cross-modal regulariza-
tion, our experiments show that they have weaker performance
than the now proposed combination of semantic-specific regulari-
zation operators.
3. Semantic image retrieval

In this section, we briefly review the semantic image retrieval
framework used in this work.
3.1. Semantic space

A semantic representation consists of a mapping from a low-
level feature space to a space where each feature has well defined
semantics. Images are first represented in a low-level feature space
X , e.g. the space of SIFT descriptors sampled over a pre-defined



126 J. Costa Pereira, N. Vasconcelos / Computer Vision and Image Understanding 124 (2014) 123–135
image grid. Given a set of images G ¼ fI1; . . . ; IGg, each image is
represented as a bag of descriptors I i ¼ fxi;1; . . . ;xi;ng. A vocabulary
L ¼ fz1; z2; . . . ; zLg of L semantic concepts is then defined. These can
be broad classes, such as ‘‘indoors’’’, ‘‘sports’’, ‘‘forest’’, a finer
grained set like object classes or object attributes, such as ‘‘tall’’
or ‘‘four-legged’’, or any other semantic classes of interest. This
vocabulary is then used to design a classifier that assigns a score
pi;j to each image I i under each concept zj. The vector of scores
pi are then regarded as the features of the image under the seman-
tic representation. This can be seen as the projection of the image
into a space S where each dimension corresponds to a concept in
the vocabulary L. The space S is usually denoted as the semantic
space.
3.2. Semantic representations

Two main types of semantic representation have been investi-
gated in the literature. In the first, the semantic space S consists
of a set of mutually exclusive classes [18]. For example, the classes
in a taxonomy used to organize an image database, where each im-
age is placed in one and only one folder. In this case, the class label
is a categorical random variable Z 2 f1; . . . ; Lg and the semantic
representation of image I i a vector of class probabilities pi;j that
add up to one. In the second, S consists of a set of non-exclusive
classes. For example, a set of binary attributes [19,20] that can be
simultaneously active for any I i. In this case, the class label is a
multivariate Bernoulli random variable Z 2 f0;1gL, i.e. a vector of
independent binary random variables, and the entries of pi do
not add to one.

The distinction is somewhat artificial, since the first representa-
tion can be extended into a hierarchical taxonomy, where higher
levels in the hierarchy are composed of broader images classes,
containing images that belong to different classes in the subse-
quent levels. Attribute-based classes could be implemented at
these higher levels [77,78]. Similarly, a retrieval system that adopts
the second representation must always have access to a disjoint set
of classes, namely the classes used as groundtruth to optimize and
evaluate the retrieval operation. This may only be used non-para-
metrically, e.g. retrieval may be based on a nearest-neighbor
search, but must exist. Otherwise, no claims can be made about
the optimality of the system, it is not clear what the system
attempts to do, and no claims can be made that the system is pref-
erable to any other system. The two representations can probably
be best seen as alternative semantic views of an image database.
One view based on generic semantics (attributes) that can be
shared by all images, the other view based on categorical seman-
tics that can be used to organize images into disjoint sets. The
two views can also be combined, e.g. by expressing images as attri-
bute vectors, mapping these vectors into a categorical variable (e.g.
Fig. 3. Example of the categorical semantic representation of an image. The image is d
models. The vector p of posterior concept probabilities is the SMN image descriptor.
things that have ‘‘fur’’, and ‘‘ears’’ belong to the class ‘‘dog’’ if they
also ‘‘eat meat’’ or to the class ‘‘cat’’ if they instead ‘‘eat fish’’), and
using the resulting probabilities as dimensions of S.
3.3. Implementation

The regularization procedures proposed in this work can be
applied to the two types of semantic representations. For simplic-
ity of the presentation, we limit the discussion to the categorical
view, and adopt the approach of [79]. The modifications needed
to extend the regularization procedure to the multivariate
Bernoulli representation are discussed in Appendix A.

Under the categorical representation of [79] image descriptors
are considered samples from a random variable X, concepts from
a random variable Z 2 f1; . . . ; Lg, and each concept assumed to
induce a probability density, PXjZðxjzÞ on X . Bayes rule then enables
the representation of image I i as a vector of posterior probability
scores

pi;j ¼ PZjXðjjI iÞ: ð1Þ

An illustration is shown in Fig. 3. In this way, the vector pi

defines a multinomial distribution, denoted as semantic multino-
mial (SMN) [18], and the semantic space S is a probability simplex,
i.e. all dimensions of pi are positive and add to one. Given a set of
manually labeled training examples per concept, the posterior
probabilities pij can be learned in several manners. One possibility
is to learn the concept distributions PXjZðxjzÞ;8z using the training
set, and apply Bayes rule to compute the posteriors of (1). Another
possibility is to learn a discriminative multi-class classifier, which
produces estimates of the posterior probabilities directly. In this
work, we adopt the latter strategy, which is implemented with
the multi-class logistic regression package of [80].

In all our experiments, the classes used to define S are the
groundtruth classes inherent to the optimality criterion used to
(1) design the retrieval system and (2) measure its performance.
For this reason, we will use the terms semantics or classes inter-
changeably in the remainder of this work. We note that this choice
of semantics makes the mapping from X to S a discriminant fea-
ture transformation for the retrieval operation. Discriminant trans-
formations, i.e. transformations informed by the groundtruth
classes, are a commonly used feature extraction procedure in ma-
chine learning. In prior work, we have investigated alternative
semantic configurations, e.g. using an expanded set of classes
derived from various datasets, or using more abstract classes
obtained through various combinations of the groundtruth classes
[81]. These experiments have shown that the semantic representa-
tion is quite robust, as these variations only produced minor
changes in retrieval accuracy. We do not repeat such studies here,
partly because there is no reason to expect different results and
ecomposed into patches, whose probabilities are evaluated under several concept
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partly because all currently available datasets that include both
images and text only have categorical annotations.

3.4. Query by semantic example

Given a semantic space S, image retrieval is implemented with
the query-by-semantic example procedure of [18]. This consists of
mapping all images I i in a database into S, by computing the asso-
ciated SMNs pi, and measuring image similarity with any measure
of similarity between SMNs. Given a query image Iq, and the asso-
ciated SMN pq, the database images are ranked by increasing val-
ues of dðpq;piÞ where dð�; �Þ is a suitable measure of SMN
distance. Several such measures can be used, in this work we adopt
the Kullback–Leibler divergence

dðpq;piÞ ¼
XL

j¼1

pq;j log
pq;j

pi;j

� �
: ð2Þ
3.5. Context and multi-modality

The semantic representation above has three properties of
particular relevance for this work. First, it is a representation that
encodes contextual dependencies between different concepts. For
example, because most images of the ‘‘outdoors’’ class include
‘‘vegetation,’’ the presence of the ‘‘vegetation’’ concept is a clue
for image assignment to the ‘‘outdoors’’ class. The semantic repre-
sentation encodes this contextual relationship by assigning image
I i to the two concepts with some probability. This enables image
retrieval and classification systems to take contextual cues into
account [18,26].

Second, unlike X , the semantic space S offers a unified repre-
sentation for information from multiple modalities. For example,
as illustrated in the right side of Fig. 1, replacing the SIFT descrip-
tors of X with descriptors extracted from text documents produces
a semantic representation for text. This enables a broader repre-
sentation of context than that possible from images alone: by aug-
menting the training set with text, it is possible to learn contextual
dependencies from the latter. One immediate benefit is that,
because text classification is less ambiguous than image classifica-
tion, the probabilities of (1) tend to be much more accurate for the
former. This is illustrated in Fig. 1 and motivates cross-modal reg-
ularization, where a regularizer learned from a corpus of images
and text is used to denoise the semantic representation of subse-
quent images.

Third, by projecting images and text in the same space, the
semantic representation simplifies the regularization operation
itself. Since semantic translation is an automatic side-effect of
the semantic representation there is no need to learn a translator
between the two modalities. This reduces the cross-modal regular-
ization problem to one of domain adaptation between two homo-
geneous domains. In this way, domain adaptation is decoupled
from semantic translation, and considerably simpler than in the
low-level space X , where a translator must always be learned
[43,76].

4. Cross-modal regularization

In this section we introduce the proposed cross-modal regular-
izer. In all equations d-dimensional vectors are represented as col-
umn (d� 1) vectors and lowercase font, and matrices in uppercase.

4.1. Cross-modal regularization on the probability simplex

We consider the regularization problem where an auxiliary
information source A is used to regularize the space where a target
data source T is to be represented. It is assumed that a training
sample fða1; t1Þ; . . . ; ðaN; tNÞg of pairs of auxiliary and target exam-
ples is available. The regularizer is learned in two steps. First, both
the auxiliary ai and target ti examples are mapped into a semantic
space S associated with a vocabulary L. This produces a sample of
SMN pairs pa

1;pt
1

� �
; . . . ; pa

N;pt
N

� �
, where pa

i and pt
i are L-dimen-

sional probability vectors, i.e. vectors of non-negative components,
pi;k P 0, that add to one,

PL
k¼1pi;k ¼ 1. It is assumed that the prob-

abilities pt
i associated with the target data are noisier than the

probabilities pa
i associated with the auxiliary source. This is usually

the case when T is an image source and A a text source. The sec-
ond step learns the transformation

U : S ! S

pt ! pa

that makes the noisy target observations as ‘‘similar as possible’’ to
the cleaner observations from the auxiliary source. This is imple-
mented as a convex combination of class-specific linear regulariz-
ers. We start by discussing the learning of the linear regularizers
and then discuss their combination in Section 4.5.

4.2. Linear regularizers

In this section, we assume that all examples
pa

1;pt
1

� �
; . . . ; pa

N;pt
N

� �
, are extracted from text-image pairs of a sin-

gle semantic class. To simplify the notation, we refer to pa
i as ai and

pt
i as ti. A class-specific regularizer is then implemented through a

linear transformation, H, such that

A ¼ TH; ð3Þ

where A and T are the N � L matrices containing one example from
A and T , respectively, per row

aT
1

aT
2

..

.

aT
N

0
BBBB@

1
CCCCA ¼

tT
1

tT
2

..

.

tT
N

0
BBBBB@

1
CCCCCA h1 h2 � � � hLð Þ ð4Þ

and hi are the columns of H. It is assumed that N > L and (3) has no
analytical solution. We seek the best H in the least squares sense,
under the constraint that the transformed vector lies in S, i.e.

tT
i hk P 0; 8i ¼ 1 . . . N; 8k ¼ 1 . . . L ð5Þ

and

tT
i H1 ¼ 1; 8i ¼ 1 . . . N; ð6Þ

where 1 is the vector of all ones. This least squares problem can be
written in the canonical form

x� ¼ arg min
x
kMx� bk2

2 ð7Þ

subject to : Mx � 0
Sx ¼ 1:

For this, it suffices to introduce the N � L2 matrix

S ¼

tT
1 tT

1 � � � tT
1

tT
2 tT

2 � � � tT
2

..

. ..
. ..

.

tT
N � � � tT

N tT
N

0
BBBBB@

1
CCCCCA ð8Þ

and rewrite the transformation of (3) as

b ¼ Mx; ð9Þ

where b and x are vectors of dimension NL and L2, respectively, and
M is a sparse matrix of dimensions NL� L2, as follows
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Fig. 4. Image SMNs before (a) and after (b) class-specific regularization.
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a1

a2

..

.

aN

0
BBBB@

1
CCCCA

|fflfflfflffl{zfflfflfflffl}
b

¼

tT
1 0 � � � 0

0 tT
1 0 ..

.

..

. . .
.

0
0 � � � 0 tT

1

tT
2 0 � � � 0

..

.

0 � � � 0 tT
N

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

h1

h2

..

.

hL

0
BBBB@

1
CCCCA

|fflfflfflffl{zfflfflfflffl}
x

: ð10Þ

Since the constraints are affine the feasible set is convex, and
the optimization problem of (7) is convex whenever MT M is
positive definite.

4.3. Positive definiteness of MT M

To show that MT M is positive definite (MT M � 0) it suffices to
check that all its eigenvalues are positive. Since MT M is a block
diagonal matrix of dimension L2 � L2 with the structure

MT M ¼

B 0 � � � 0

0 B 0 ..
.

..

. . .
.

0
0 � � � 0 B

0
BBBBB@

1
CCCCCA; ð11Þ

its eigenvalues are those of B, with multiplicity L. Furthermore,
because the L� L matrix B is a sum of outer products of probability
vectors

B ¼
XN

i¼1

ðtitT
i Þ; ð12Þ

it has full-rank if there are at least L linearly independent ti in this
summation. In this case, B � 0;MT M � 0, and the solution of (7) is a
global minimum. Making N � L yields rankðBÞ ¼ L almost surely. In
practice, the stochastic nature of ti makes it sufficient to have
N ¼ L.1

4.4. Learning

The optimization of (7) is a quadratic programming problem
and can be solved by many standard optimization procedures. In
our implementation, we use an active-set strategy (also known
as a projection method) similar to that of [?,83]. In all experiments,
the matrix MT M was found to be positive definite, making the solu-
1 The number of training images per class (N) equal to the number of semantic
concepts (L).
tion a global minimum. From (10), the regularization matrix H can
be assembled by sequential extraction of the columns hi from x�.
The procedure is summarized in Algorithm 1.

Algorithm 1. Compute regularization operators (7)
input: train set of images and auxiliary data 8 classes
i ¼ 1;2; . . . ; L
T i ¼ fI1; I2; . . . ; INg
Ai ¼ fX1;X2; . . . ;XNg

1 compute vectors of posterior probabilities
tk  WðIkÞ
ak  HðX kÞ

2 for each concept: i ¼ 1; . . . ; L

solve: x� ¼ arg minxkMx� bk2
2

s.t. Mx � 0
Sx ¼ 1

where M; b are defined in (10) and S in (8).
output: set of regularization operators: H ¼ fH1;H2; . . . ;HLg

A conceptual illustration of the regularization is given in Fig. 4.
The figure shows the outcome of the regularization on a small sam-
ple of images from the ‘‘Warfare’’ class of the Wikipedia dataset,
using a semantic space of three concepts (‘‘Warfare’’, ‘‘History’’,
and ‘‘Royalty’’). The images are represented by their SMNs, shown
in Fig. 4a, which, due to the ambiguity of image classification, are
scattered throughout the probability simplex. The auxiliary source
is text. Fig. 4b shows the result of the regularization of the image
SMNs, t, with the transformation

UðtÞ ¼ HT t: ð13Þ

The regularized SMNs cluster much more tightly in the neigh-
borhood of the vertex of the simplex associated with the ‘‘Warfare’’
concept. This is the least squares compromise between the SMN
distribution expected from the text, and the noisy distribution
observed from the images.

4.5. Class-adaptive regularization

So far, we have assumed that the class of the images to regular-
ize is known. While this is usually the case during learning, it does
not usually hold at run time, where the goal is to regularize SMNs
of images outside the training set. In this case, it is necessary to
select which of the regularization operators in the set
H ¼ fH1;H2; . . . ;HLg is more suitable for a particular image t. This
is a classification problem. Assuming the existence of auxiliary
data a for image t, two strategies are possible.
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(i) Classify the auxiliary information, a, and apply to the image t
the regularization operator corresponding to the resulting
class. Only one operator is applied.

(ii) Apply a convex combination of all regularization operators,
where the combination coefficients are obtained from a
regression or classification procedure over the auxiliary
information a. Several regularization operators are
combined.

The two procedures are summarized by Algorithms 2-(i) and
2-(ii), respectively. When the auxiliary data is text, Algorithm
2-(i) applies a text classifier to text a, in order to determine its class
j�. The regularization operator learned from image-text pairs of this
class is then applied to image t.

Algorithm 2-(i). Classification-based regularization

input: set of regularization operators H, and image-text pair
ðt; aÞ, where t is the image to regularize and a its auxiliary
information.

1 j� ¼ arg maxjPðjjaÞ; 8j ¼ f1;2; . . . ; Lg
2 UðtÞ  HT

j� t
output: regularized image UðtÞ

On the other hand, Algorithm 2-(ii) computes a measure of the
relevance fjðaÞ of class j for text a, which is then used to weight the
contribution of operator Hj to the regularization of t. This allows
the combination of all operators, according to their relative impor-
tance. Step 2 ensures that the weight vector, w, is a convex combi-
nation (i.e. adds up to one).
Algorithm 2-(ii). Interpolation-based regularization

input: set of regularization operators H, and image-text pair
ðt; aÞ, where t is the image to regularize and a its auxiliary
information.

1 wjðtÞ  fjðaÞ; 8j ¼ f1;2; . . . ; Lg
fjðÞ is a regression function for class j

2 w rðwÞ
3 UðtÞ  

P
iwiðtÞHT

i t
output: regularized image UðtÞ

Note that, in both cases, the overall regularizer is non-linear.
Algorithm 2-(i) implements a piecewise linear regularization and
Algorithm 2-(ii) a convex combination of linear regularizers (based
on a non-linear weighting function). For simplicity, we denote
Algorithm 2-(i) as classification-based regularizer and Algorithm
2-(ii) as interpolation-based.
4.6. Regularizing in the absence of auxiliar modality

In the previous section, we have assumed that auxiliary infor-
mation a can be used to guide the choice of regularization operator
for image t. This may not always be possible, since not all images
possess auxiliary information. When this is the case, a possibility
is to simply use the image t in place of a in line 1 of both classifi-
cation and interpolation procedures. Another possibility is to use a
surrogate auxiliary datapoint. This consists of finding, within the set
of image/text pairs used to learn the regularization operators, the
image tj� most similar to the image t being regularized. The text
aj� associated with tj� is then used as a surrogate text for the regu-
larization of t, using either Algorithm 2-(i) or (ii). This can be seen
as a pre-processing procedure for images that lack text.
4.7. Classification and regression functions

There are many possibilities for implementing the classification
and regression functions of Algorithms 2-(i) and (ii). Different
methods frequently have different performance on different types
of data. To evaluate the robustness of the proposed regularization
to the choice of these functions, we consider three popular
methods.

Logistic regression (LR) computes the posterior probability of a
particular class by fitting the semantic features to a logistic func-
tion. Parameters are chosen to minimize the loss function,

min
w

1
2

wT wþ C
X

i

logð1þ expð�yiw
T xiÞÞ ð14Þ

where yi is the class label, xi the input feature vector, and w a
parameter vector. A multi-class LR returns a vector of posterior
probabilities that can be used as weights in the interpolation
scenario. For classification, we select the class of largest posterior
probability. Our implementation of LR is based on the Liblinear
package of [80].

Support vector machines (SVM) learn the separating hyper-
plane of largest margin between two classes, using

min
w;b;n

1
2

wT wþ C
X

i

ni ð15Þ
s:t: yiðwT xi þ bÞP 1� ni; 8i

ni P 0

where w and b are the hyperplane parameters, yi the class label, xi

input feature vectors, ni slack variables that allow outliers, and
C > 0 a penalty on the number of outliers. SVM classification can
be used directly to select the regularization operator. For interpola-
tion, the SVM scores yiwT xi can be converted into class probabilities
through a calibration function. Our SVM implementation is based
on the LibSVM [84] package.

Gaussian processes (GP) are a generalization of the Gaussian
distribution. A GP defines a distribution over functions

f ðxÞ 	 GPðmðxÞ; kðx; xTÞÞ; ð16Þ

which is specified by a mean and covariance functions

mðxÞ ¼ E½f ðxÞ

kðx; xTÞ ¼ E½ðf ðxÞ �mðxÞÞðf ðxTÞ �mðxTÞÞ
:

In this work, we adopt a squared-exponential covariance and
affine mean, with a Gaussian likelihood function. This combination
enables an exact inference procedure, which is implemented with
the GPML [85] package.
5. Experiments

Several experiments were performed to evaluate the proposed
regularizer of image semantics, denoted as ‘‘RIS’’. They are grouped
in three sets. The first aimed to determine the best regularizer con-
figuration, by comparing the performance of the classification and
interpolation-based methods and different classification and
regression functions. The second aimed to evaluate the robustness
of the regularization to missing auxiliary information. Lastly, the
third compared the proposed regularization procedure to a
number of recently proposed domain adaptation methods.



Table 1
Data split among training and test sets.

Dataset Train set Test set

TVGraz 1558 500
Wikipedia 2173 693
Pascal-senteces 700 300
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5.1. Experimental set-up

All experiments are performed in the QBSE setting. In what fol-
lows, the terms retrieval set and database are used indistinguish-
ably when referring to the repository of images being ranked. A
query refers to the act of selecting one image from the database
and using it to rank the remaining ones. Auxiliary information is
only available for database images and always in the form of text
modality. In some experiments, a percentage of the database
images does not contain auxiliary information. Query images are
never regularized.

Datasets: three datasets are used in all experiments: ‘‘TVGraz’’
[86] contains 2058 image/text pairs of 10 semantic categories,
‘‘Wikipedia’’ [37] 2866 pairs from 10 categories, and ‘‘Pascal sen-
tences’’ [87] 1000 pairs from 20 categories. These datasets have dif-
ferent characteristics. Pascal-sentences originates from a subset of
Pascal VOC [88] images augmented with five sentences written by
a human annotator [87]. The added text provides some context for
each picture, but is not a semantically rich document. On both
Wikipedia and TVGraz, the text is much more extensive and infor-
mative. On Wikipedia, classes are broad themes (‘‘Media’’, ‘‘Music’’,
‘‘Biology’’, etc.), and intra-class image variability is quite large. On
this dataset, image classification tends to have low accuracy. In
fact, in the absence of additional information, many of the images
are difficult to classify even for a human subject. On the other
hand, text classes are fairly unambiguous. TVGraz contains narrow
(‘‘Caltech-like’’) object classes. The text, although less stylistic than
that of Wikipedia, is informative of the class. This leads to fairly
high classification accuracies for both images and text. Datasets
were split into a training and test sets, in the range of 70–80%
for the former and 30–20% for the latter, as detailed in Table 1.
In each case, the training set is used to learn all semantic classifiers
and regularization operators (both classification or interpolation
functions and linear regularizers). The test set is then used in the
retrieval experiments. These are implemented in a leave-one-out
setting; repeating the retrieval operation with each image as a
query and averaging results over all queries.

Representation: all images are represented as a bag-of-words
(BOW) [89], using SIFT descriptors quantized with a 1024 visual
word codebook. Text representation is based on latent Dirichlet allo-
cation [90]. An LDA model is learned from all texts, and used to
compute the probability of each text under 100 hidden topics. This
probability vector is used for text representation. Both this and the
image representation are mapped into a semantic space whose fea-
tures are the classes that compose the dataset. This is implemented
by designing a classifier W of visual word histograms and a classi-
fier H of hidden topic probabilities. In both cases, the classifier is a
multi-class logistic regressor [80] and the semantic descriptor the
vector of posterior probabilities of Eq. (1).
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Fig. 5. Retrieval performance (mAP) of the various regularizer configurations on the th
classification methods implemented with GP, SVM, and LR. The dashed line denoted ‘‘n
Evaluation metrics: retrieval performance is assessed with pre-
cision-recall curves. To facilitate comparisons of different methods,
these are sometimes summarized by the mean average precision
(mAP) or the R-precision. The latter requires a set of known rele-
vant documents (r) and the computation of the precision at recall r.
5.2. Regularization methods

A first set of experiments is designed to evaluate the effective-
ness of various regularizer configurations. This includes classifica-
tion vs. interpolation based regularization (Algorithm 2-(i) vs.
2-(ii)) and the choice of classification or interpolation function
(GP, SVM or LR). In these experiments all database images have
auxiliary text. Fig. 5 compares the mAP of all regularization meth-
ods. In each graph, the dashed line labeled ‘‘none’’ represents QBSE
without regularization. Since it makes use of no auxiliary informa-
tion, this lower-bound can be seen as measure of the visual com-
plexity of each dataset. It confirms that both Wikipedia and
Pascal are significantly more challenging than TVGraz.

The figure shows that the benefits of regularization are substan-
tial for all datasets. In some cases, the regularized mAP is more
than double of that achieved without regularization. With the
exception of SVM-based interpolation, all methods achieve signif-
icant gains in all datasets. In general, the relative gains over vanilla
QBSE are largest for the more difficult datasets. Concerning the
relative performances of the different regularizers, the two regular-
ization strategies have similar performance, with a slight advan-
tage for interpolation in TVGraz and Wikipedia and a slight
advantage for classification in Pascal. With regards to the choice
of regularization functions, SVMs tended to be weaker than GPs
and LR for interpolation, but performed well under the classifica-
tion strategy. Overall, the best performance was achieved by the
LR implementation of interpolation-based regularization.
5.3. Coping with absent text

A second set of experiments is designed to evaluate the robust-
ness of the regularization to missing auxiliary data. In these exper-
iments only a percentage of the database images are
complemented by text. These images are regularized with the
interpolation-based regularizer as detailed in Algorithm 2-(ii),
GP
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ree datasets. Each graph shows two groups of bars, referring to interpolation and
one’’ indicates the mAP of QBSE without regularization.
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Section 4.5. For the regularization of the remaining images differ-
ent weighting functions (w) are tested. Denoted:

whfunctioniðhfeatureiÞ;

where the possible values for hfunctioni and hfeaturei are listed in
Table 2.

Each hfunctioni-hfeaturei pair is an admissible combination to
obtain regularization weights. Logistic regression (LR), support
vector machines (SVM) and Gaussian processes (GP) are interpola-
tion functions detailed in Section 4.7. Another possible function is
the identity (denoted 1) that maps the hfeaturei-vector directly to
act as the weights. For image features all functions are tested:
wLR, wGP, wSVM and w1. Since the image has no text of its own, alter-
natively we can look for a surrogate text. Since the superiority of
LR-based interpolation has already been established for text fea-
tures in the previous section (Fig. 5), when using these features
(NN-text) we test only: wLR. These experiments are repeated for
various percentages of images with text. Each experiment is re-
peated five times, each using a different random set of such
images.

Fig. 6 presents plots of mAP vs. the % of images complemented
by text. As before, we present the lower-bound of QBSE without
regularization (labeled ‘‘none’’). A second lower bound was com-
puted by regularizing only the images that are complemented by
text while applying the identity weights to the remaining images
(labelled ‘‘w1ðimgÞ’’). While superior to vanilla QBSE, this approach
is not very robust. Its mAP degrades quickly as the percentage of
text decreases. Better results are achieved by using a surrogate text
to weigh the regularization operators applied to images without
text. For clarity we only present the implementation of LR-based
regularization for surrogate text (labelled ‘‘wLRðnn-txtÞ’’). As
mentioned, this method achieved superior performance when
compared to GP and SVM. However, the surrogate text features
underperform the image-driven selection of regularization opera-
tors. The remaining curves in each plot correspond to the imple-
mentation of this strategy with LR, GP, and SVM (labelled
‘‘wLRðimgÞ’’, ‘‘wGPðimgÞ’’ and ‘‘wSVMðimgÞ’’ respectively). Among
these, LR achieves the best results on all datasets.
Table 2
Functions and features used to obtain the regularization weights for an image with no
text.

hfunctioni hfeaturei

LR, GP, SVM or 1 Image or NN-text
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Fig. 6. mAP of the different regularizers vs. the percentage of database images complem
QBSE. Four functions are tested when using the image’s own features: logistic regression
and ‘‘w1 ’’. When using a surrogate text for weight computation only LR-based regulariz
Overall, the experiments of this and the previous section pro-
vide strong evidence for the benefits of regularization. Best results
are obtained with an interpolation-based regularizer, using class-
probabilities inferred with LR to weigh the class-specific regulari-
zation operators. This strategy proved quite robust to the absence
of auxiliary text in the retrieval set. For images without text, good
results are obtained by simply using the class probabilities derived
from the image itself to weigh regularization operators. For exam-
ple, on the harder Wikipedia and Pascal datasets, the mAP achieved
with regularization was double that of baseline QBSE when only
60% of the images contained text. On the easier TVGraz dataset,
where image-based estimates of class probability are more
reliable, it improved on QBSE even when no images have auxiliary
text. Interestingly, in all datasets, this regularization strategy also
led to a nearly-linear increase in mAP with the percentage of data-
base images complemented by text. For all these reasons, we only
considered the LR implementation of interpolation-based regular-
ization in the remaining experiments.
5.4. Comparison to alternative regularization methods

When compared to the previous literature, the proposed regu-
larization in semantic space has the advantage of (1) not requiring
a translation function, and (2) enabling the combination of class-
specific regularizers. In this section, we report on experiments
designed to evaluate the benefits of these properties. Since some
of the competing methods assume image-text pairs for all exam-
ples, we only considered the scenario where all database images
are complemented by text. For some methods (DT, GFK), the code
provided by the authors produces matrices of similarity or dis-
tances between pairs of images. In these cases, retrieval was based
on these distances. For methods that produced regularized image
SMNs we used the set-up of the previous sections, i.e. QBSE with
the KL divergence as similarity function. In all experiments, the
proposed regularizer was implemented with the interpolation-
based regularizer, using text features and logistic regression in
the weighting function.

Previous approaches to cross-modal adaptation, e.g. [43,76],
represent images and text in low-level feature spaces and attempt
to learn a translator function that maps text into the image
domain. This is done by measuring co-occurrences of visual and
text words on image-text pairs. To compare the proposed regular-
ization approach with these methods, we implemented an exten-
sion of the text-to-image translator (TTI) method of [43]. The
implementation was based on code provided by the authors, which
learns a translator function that assigns a confidence value to
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ented by text, on the three datasets. Line labelled ‘‘none’’ corresponds to standard
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ation is tested and denoted ‘‘wLR ’’.
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Fig. 7. Precision-recall curves of different regularizers on the three datasets. The proposed regularizer of image semantics is denoted as ‘‘RIS’’.

Table 3
Comparison of the mAP and R-precision scores of the proposed regularizer with those of previous approaches. Relative gains with respect to the latter are shown in (%). All
methods were implemented with code provided by the authors. Bold shows the best results for each dataset. Italic shows the relative gains of the best method over the method on
that line.

Method TVGraz Wikipedia Pascal TVGraz Wikipedia Pascal

mAP % mAP % mAP % R-precision

RIS 0.622 – 0.356 – 0.224 – 0.554 0.272 0.182
TTI [43] 0.531 17 0.323 10 0.220 2 0.476 0.259 0.168
MMDT [42] 0.405 53 0.155 129 0.115 95 0.400 0.158 0.114
GFK [41] 0.384 62 0.155 129 0.131 71 0.372 0.159 0.135

DT Symm. [39] 0.375 65 0.153 133 0.101 122 0.377 0.157 0.102
Asymm. [40] 0.425 46 0.152 134 0.118 90 0.396 0.148 0.120
QBSE [18] 0.372 67 0.155 129 0.114 97 0.368 0.156 0.107
Random 0.1 522 0.1 256 0.05 348 0.1 0.1 0.05

2 We note that some of the results reported in the table for TTI and QBSE are
weaker than those reported in the earlier version of this work [44]. This is due to the
fact that the similarity functions used for the image retrieval operation are different.
The centered normalized correlation was used in [44], while we use the Kullback–
Leibler divergence of (2) in this work. These functions yield slight variations in the
mAP for certain dataset/method combinations. However, the differences are small
and do not affect the conclusions of this work.
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image/text pairs. This is a measure of how relevant the text is for
the image. Preliminary experiments showed that best results were
obtained by learning one translator per semantic class. In all exper-
iments, each image/text pair in the retrieval set is represented by
concatenation of the scores computed for all classes. Since queries
have no text, query images were paired with the average text com-
puted from the training set.

Previous approaches to both cross-modal and image-specific
domain adaptation have proposed global transformations between
the auxiliary and target domains. For example, the (DT) method of
[39] learns the linear transformation, W, that minimizes the
regularization cost trðWÞ � log detðWÞ subject to constraints that
enforce (positive) similarity for a random sample of same-class
object pairs. The choice of regularizer and constraints had been
previously proposed in [91], where it is denoted information theo-
retic metric learning (ITML). Since the learned transformation is
always symmetric positive definite, the method is denoted
DTSymm. A variant of this method, proposed in [40], uses a different
objective function that does not enforce positive definiteness. This
is referred to as DTAsymm. Max-Margin Domain Transforms (MMDT)
was later proposed in [42]. This is a combination of domain and
model adaptation that optimizes an objective function of a dis-
criminant classifier rather than the similarity measure used in
[72]. Finally, we also consider the Geodesic Flow Kernel (GFK)
method of [41] (GFK). This method models domain shift by
integrating an infinite number of subspaces that establish a path
between the auxiliary and target domains. It determines the opti-
mal dimensionality of the subspaces in which to embed the two
domains and constructs the geodesic curve connecting them
through the Grassmann manifold. The geodesic distance is used
to define a kernel that measures similarity between auxiliary and
target data. For more details on these methods the reader is
referred to the original publications. Preliminary experiments
showed that they achieve best performance when applied in
semantic space, i.e. using text SMNs as auxiliary and image SMNs
as target data rather than their low-level representations. This is
the configuration used in all experiments discussed below. Other
than this, all methods were implemented with the code provided
by the authors.

Fig. 7 presents the 11-point interpolated precision-recall curves
for all methods. Table 3 summarizes these results by presenting
the mAP and R-precision computed over all queries.2 These results
support several conclusions. First, the class-specific transformation
used by both the proposed regularizer and our extension of TTI
achieves better regularization than the holistic transformation of
the space used by the other methods. This seems to be particularly
important on the datasets (Wikipedia and Pascal) where image clas-
sification is most ambiguous. Second, the simpler learning problem
inherent to the representation in semantic space (no need to learn
a translator function) enables further improvements. This is visible
both by (1) the better performance of the proposed regularizer than
TTI, and (2) the better performance of the global transform methods
in the semantic space (observed in our preliminary experiments).
Third, all methods outperformed QBSE in at least some datasets,
with significant gains for the proposed regularizer.

Overall, these results confirm that the regularization of image
semantics is beneficial (improvements over QBSE), and show
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that both the semantic representation (no need for translation)
and the class-adaptive nature of the proposed regularizer are
beneficial for image retrieval. Finally, these gains tend to be
most significant when the ambiguity of image classification is
Fig. 8. Retrieval examples (three queries of TVGraz (top), Wikipedia (middle) and Pascal
and top four database matches on the right.
largest, as in the Wikipedia and Pascal datasets. Fig. 8 illustrates
the robustness of the retrieval operation after semantic
regularization, by presenting the top four matches for various
query images from the three datasets. Each query is shown in
-sentences (bottom)). In all cases the query image is shown on the leftmost column
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a different row, displaying the query image on the left and the
top matches on the right.

6. Conclusions

In this work, we have proposed a cross-modal domain adapta-
tion method that exploits training text to learn a regularizer of im-
age semantics. The resulting regularization was shown beneficial
for image retrieval, where it led to significant performance
improvements on various challenging datasets. While the largest
gains (up to double mAP) were obtained for retrieval problems
where all database images are complemented by text, the method
was also shown successful when this is not the case. In fact, for
some datasets, it enabled gains even when no text was available
to the retrieval operation.

This robustness was justified by two properties of the proposed
regularizer. The first is the semantic nature of the underlying im-
age and text representation. This enables the modeling of contex-
tual relationships between semantic concepts and establishes a
unified space for image and text data. In result, the cross-modal
regularization problem is reduced to one of adaptation between
two homogeneous domains, i.e. there is no need to learn a transla-
tor between images and text. It was shown that, when compared to
previous proposals to cross-modal regularization, this significantly
simplifies the learning problem, enabling better generalization.
The second is the implementation of the regularizer as a combina-
tion of class-specific regularizers. This leads to a piecewise-linear
transformation of the image descriptors to regularize, which is
highly non-linear but can be learned efficiently. When compared
to previous approaches to domain adaptation in computer vision,
the resulting regularizer is both more flexible and naturally aligned
to the semantics of images and text. This was shown to enable sig-
nificant gains in regularization performance.

Acknowledgments

This work was funded by FCT graduate Fellowship SFRH/BD/
40963/2007 from the Portuguese Ministry of Sciences and Educa-
tion, and NSF Grant CCF-0830535.

Appendix A. Multivariate Bernoulli representation

In this appendix, we discuss the extension of the regularization
procedure of Section 4.2 to the multivariate Bernoulli semantic
representation. The only modification is to replace the constraint
that regularized semantic descriptors must add up to one
(Sx ¼ 1) by a constraint that each concept probability must be less
or equal to one (Mx � 1). The optimization problem of (7) is trans-
formed into

x� ¼ arg min
x
kMx� bk2

2

subject to : Mx � 0
Mx � 1

where M; S, and b are defined as before. The problem remains con-
vex, and can be solved with the numeric procedures used in
Section 4.2.
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