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Abstract

Many machine learning applications involve imbalance class prior probabilities, multi-class
classification with many classes, or “cost-sensitive” classification. In such domains, each
class (or in some cases, each sample) requires an special treatment.

In this paper, we use a constructive procedure to extend SVM’s standard loss function
to optimize classifier with respect to class imbalance or class costs. By drawing connections
between risk minimization and probability elicitation, we show that the resulting classi-
fier guarantees Bayes consistency. We further analyze the primal and the dual objective
functions and derive the objective function in a regularized risk minimization framework.
Finally, we extend the classifier to the with cost-sensitive learning with example depen-
dent costs. We perform experimental analysis on class imbalance, cost-sensitive with given
class and example costs and show that proposed algorithm provides superior generalization
performance, compared to the conventional methods.

Keywords: Cost Sensitive Learning, Classification, Class Imbalance, SVM, Bayes Con-
sistency

1. Introduction

The most popular strategy for the design of classification algorithms is to minimize the
probability of error, assuming that all misclassifications have the same cost. The resulting
decision rules are usually denoted as cost-insensitive. However, in many important applica-
tions of machine learning, such as medical diagnosis, fraud detection, or business decision
making, certain types of error are much more costly than others. Other applications involve
significantly unbalanced datasets, where examples from different classes appear with sub-
stantially different probability. It is well known, from Bayesian decision theory, that under
any of these two situations (uneven costs or probabilities), the optimal decision rule deviates
from the optimal cost-insensitive rule in the same manner. In both cases, reliance on cost
insensitive algorithms for classifier design can be highly sub-optimal. While this makes it
obviously important to develop cost-sensitive extensions of state-of-the-art machine learning
techniques, the current understanding of such extensions is limited.

In this work we consider the support vector machine (SVM) architecture Cortes and
Vapnik (1995). Although SVMs are based on a very solid learning-theoretic foundation,
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and have been successfully applied to many classification problems, it is not well under-
stood how to design cost-sensitive extensions of the SVM learning algorithm. The stan-
dard, or cost-insensitive, SVM is based on the minimization of a symmetric loss function
(the hinge loss) that does not have an obvious cost-sensitive generalization. In the litera-
ture, this problem has been addressed by various approaches, which can be grouped into
three general categories. The first is to address the problem as one of data processing, by
adopting resampling techniques that under-sample the majority class and/or over-sample
the minority class Kubat and Matwin (1997); Chawla et al. (2002); Akbani et al. (2004);
Geibel et al. (2004); Zadrozny et al. (2003); Tang et al. (2009); Köknar-Tezel and Late-
cki (2009); Wang et al. (2012a); Mathew et al. (2017); Zeng and Gao (2009); Wang et al.
(2012b). Resampling is not easy when the classification unbalance is due to either differ-
ent misclassification costs (not clear what the class probabilities should be) or an extreme
unbalance in class probabilities (sample starvation for classes of very low probability). It
also does not guarantee that the learned SVM will change, since it could have no effect on
the support vectors. Active learning based methods have also been proposed to train the
SVM algorithm on the informative instances, instances which are close to the hyperplane
Ertekin et al. (2007). The second class of approaches Amari and Wu (1999); Wu and Chang
(2003, 2005) involve kernel modifications. These methods are based on conformal trans-
formations of the input or feature space, by modifying the kernel used by the SVM. They
are somewhat unsatisfactory, due to the implicit assumption that a linear SVM cannot be
made cost-sensitive. It is unclear why this should be the case. The third, and most widely
researched, approach is to modify the SVM algorithm in order to achieve cost sensitivity.
This is done in one of two ways. The first is a naive method, known as boundary movement
(BM-SVM), which shifts the decision boundary by simply adjusting the threshold of the
standard SVM Karakoulas and Shawe-Taylor (1999). Under Bayesian decision theory, this
would be the optimal strategy if the class posterior probabilities were available. However,
it is well known that SVMs do not predict these probabilities accurately. While a literature
has developed in the area of probability calibration Platt (2000), calibration techniques do
not aid the cost-sensitive performance of threshold manipulation. This follows from the fact
that all calibration techniques rely on an invertible (monotonic and one-to-one) transfor-
mation of the SVM output. Because the manipulation of a threshold at either the input or
output of such a transformation produces the same receiver-operating-characteristic (ROC)
curve, calibration does not change cost-sensitive classification performance. The boundary
movement method is also obviously flawed when the data is non-separable, in which case
cost-sensitive optimality is expected to require a modification of both the normal of the sep-
arating plane w and the classifier threshold b. The second proposal to modify SVM learning
is known as the biased penalties (BP-SVM) method Bach et al. (2006); Lin et al. (2002);
Davenport et al. (2006); Wu and Srihari (2003); Chang and Lin (2011). This consists of
introducing different penalty factors C1 and C−1 for the positive and negative SVM slack
variables during training. It is implemented by transforming the primal SVM problem into

argmin
w,b,ξ

1

2
||w||2 + C

C1

∑
{i|yi=1}

ξi + C−1

∑
{i|yi=−1}

ξi


subject to yi(w

Tx+ b) ≥ 1− ξi.

(1)
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The biased penalties method also suffers from an obvious flaw, which is converse to that of
the boundary movement method: it has limited ability to enforce cost-sensitivity when the
training data is separable. For large slack penalty C, the slack variables ξi are zero-valued
and the optimization above degenerates into that of the standard SVM, where the decision
boundary is placed midway between the two classes rather than assigning a larger margin
to one of them.

In this work we propose an alternative strategy for the design of cost-sensitive SVMs.
This strategy is fundamentally different from previous attempts, in the sense that is does
not directly manipulate the standard SVM learning algorithm. Instead, we extend the SVM
hinge loss, and derive the optimal cost-sensitive learning algorithm as the minimizer of the
associated risk. The derivation of the new cost-sensitive hinge loss draws on recent connec-
tions between risk minimization and probability elicitation Masnadi-Shirazi and Vasconcelos
(2008). Such connections are generalized to the case of cost-sensitive classification.

It is shown that it is always possible to specify the predictor and conditional risk func-
tions desired for the SVM classifier, and derive the loss for which these are optimal. A
sufficient condition for the cost-sensitive Bayes-optimality of the predictor is then provided,
as well as necessary conditions for conditional risks that approximate the cost-sensitive
Bayes risk. Together, these conditions enable the design of a new hinge loss which is
minimized by an SVM that 1) implements the cost-sensitive Bayes decision rule, and 2) ap-
proximates the cost-sensitive Bayes risk. It is also shown that the minimization of this loss
is a generalization of the classic SVM optimization problem, and can be solved by identical
procedures. The resulting algorithm avoids the shortcomings of previous methods, produc-
ing cost-sensitive decision rules for both cases of separable and inseparable training data.
Experimental results show that these advantages result in better cost-sensitive classification
performance than previous solutions.

Since CS-SVM is implemented in the dual, cost-sensitive learning in the dual should be
studied more closely. We show that cost-sensitive learning in the dual appears as regulariza-
tion and changing the constraint’s upper bounds which stem from sensitivity analysis. These
connections are considered under cost-sensitive learning and imbalanced data learning.

Moreover, we show that in the cost-sensitive and imbalanced data settings, the priors and
costs should be incorporated in the performance measure. We propose minimum expected
(cost-sensitive) risk as a cost sensitive performance metric and demonstrate its connections
to the ROC curve. For the case of unknown costs, we introduce a robust measure which
reflects the performance of the classifier under a given tolerance of false-positive or false-
negative errors.

The paper is organized as follows. Section 2 briefly reviews the probability elicitation
view of loss function design Masnadi-Shirazi and Vasconcelos (2008). Section 3 then gen-
eralizes the connections between probability elicitation and risk minimization to the cost-
sensitive setting. In Section 4, these connections are used to derive the new SVM loss and
algorithm. In section 5, the dual problem of CS-SVM is thoroughly evaluated in the sense of
regularization and sensitivity analysis. Section 6 presents an extension of CS-SVM for prob-
lems with example-dependent costs. Section 7 proposes minimum cost sensitive risk as a
standard measure for examining classifier performance in the cost-sensitive and imbalanced
data setting. Finally, Section 8 presents an experimental evaluation that demonstrates
improved performance of the proposed cost sensitive SVM over previous methods.
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2. Bayes consistent classifier design

The goal of classification is to map feature vectors x ∈ X to class labels y ∈ {−1, 1}. From
a statistical viewpoint, the feature vectors and class labels are drawn from probability
distributions PX(x) and PY (y) respectively. In terms of functions, we write a classifier as
h(x) = sign[p(x)], where the function p : X → R is denoted as the classifier predictor. Given
a non-negative function L(p(x), y) that assigns a loss to each (p(x), y) pair, the classifier is
considered optimal if it minimizes the expected loss R = EX,Y [L(p(x), y)], also known as
the risk. Minimizing the risk, is itself equivalent to minimizing the conditional risk

EY |X[L(p(x), y)|X = x] = PY |X(1|x)L(p(x), 1)

+(1− PY |X(1|x))L(p(x),−1), (2)

for all x ∈ X . It is discerning to write the predictor function p(x) as a composition of
two functions p(x) = f(η(x)), where η(x) = PY |X(1|x) is the posterior probability , and
f : [0, 1] → R is denoted as the link function. This provides a valuable connection to
the Bayes decision rule. A loss is considered Bayes consistent when its associated risk is
minimized by the BDR. For example the zero-one loss can be written as

L0/1(f, y) =
1− sign(yf)

2

=

{
0, if y = sign(f);
1, if y 6= sign(f),

(3)

where we omit the dependence on x for notational simplicity. The conditional risk for this
loss function is

C0/1(η, f) = η
1− sign(f)

2
+ (1− η)

1 + sign(f)

2

=

{
1− η, if f ≥ 0;
η, if f < 0.

(4)

This risk is minimized by any predictor f∗ such that
f∗(x) > 0 if η(x) > γ
f∗(x) = 0 if η(x) = γ
f∗(x) < 0 if η(x) < γ

(5)

and γ = 1
2 . Examples of optimal predictors include f∗ = 2η − 1 and f∗ = log η

1−η . The
associated optimal classifier h∗ = sign[f∗] is the well known Bayes decision rule thus proving
that the zero-one loss is Bayes consistent. Finally, the associated minimum conditional
(zero-one) risk is

C∗0/1(η) = η

(
1

2
− 1

2
sign(2η − 1)

)
+

(1− η)

(
1

2
+

1

2
sign(2η − 1)

)
. (6)
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A handful of other losses have been shown to be Bayes consistent. These include the
exponential loss used in boosting classifiers Friedman et al. (2000), logistic loss of logistic
regression Friedman et al. (2000); Zhang (2004), or the hinge loss of SVMs Zhang (2004).
These losses are of the form Lφ(f, y) = φ(yf) for different functions φ(·) and are known as
margin losses. Margin losses assign a non-zero penalty to small positive yf , encouraging the
creation of a margin. The resulting large-margin classifiers have better generalization than
those produced by the zero-one loss or other losses that do not enforce a margin Vapnik
(1998). For a margin loss, the conditional risk is simply

Cφ(η, f) = ηφ(f) + (1− η)φ(−f). (7)

The conditional risk is minimized by the predictor

f∗φ(η) = arg min
f
Cφ(η, f) (8)

and the minimum conditional risk is C∗φ(η) = Cφ(η, f∗φ).

Recently, a generative formula for the derivation of novel Bayes consistent loss functions
has been presented in Masnadi-Shirazi and Vasconcelos (2008) relying on classical probabil-
ity elicitation in statistics Savage (1971). Comparable to risk minimization, in probability
elicitation, the goal is to find the probability estimator η̂ that maximizes the expected
reward

I(η, η̂) = ηI1(η̂) + (1− η)I−1(η̂), (9)

where I1(η̂) is the reward for predicting η̂ when event y = 1 holds and I−1(η̂) the cor-
responding reward when y = −1. The functions I1(·), I−1(·) are such that the expected
reward is maximal when η̂ = η, i.e.

I(η, η̂) ≤ I(η, η) = J(η), ∀η (10)

with equality if and only if η̂ = η.

Theorem 1 Savage (1971) Let I(η, η̂) and J(η) be as defined in (9) and (10). Then 1)
J(η) is convex and 2) (10) holds if and only if

I1(η) = J(η) + (1− η)J ′(η) (11)

I−1(η) = J(η)− ηJ ′(η). (12)

The theorem states that I1(·), I−1(·) can be derived such that (10) holds by apply-
ing an appropriate convex J(η). This primary theorem was used in Masnadi-Shirazi and
Vasconcelos (2008) to establish the following for margin loss functions.

Theorem 2 Masnadi-Shirazi and Vasconcelos (2008) Let J(η) be as defined in (10) and
f a continuous function. If the following properties hold

1. J(η) = J(1− η),
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2. f is invertible with symmetry

f−1(−v) = 1− f−1(v), (13)

then the functions I1(·) and I−1(·) derived with (11) and (12) satisfy the following equalities

I1(η) = −φ(f(η)) (14)

I−1(η) = −φ(−f(η)), (15)

with

φ(v) = −J [f−1(v)]− (1− f−1(v))J ′[f−1(v)]. (16)

This theorem provides a generative path for designing Bayes consistent margin loss functions
for classification. Specifically, any convex symmetric function J(η) = −C∗φ(η) and invertible

function f−1 satisfying (13) can be used in equation (16) to derive a novel Bayes consistent
loss function φ(v). This is in contrast to previous approaches which require guessing a
loss function φ(v) and checking that it is Bayes consistent by minimizing Cφ(η, f), so as
to obtain whatever optimal predictor f∗φ and minimum expected risk C∗φ(η) results Zhang
(2004) or methods that restrict the loss function to being convex, differentiable at zero, and
have negative derivative at the origin Bartlett et al. (2006).

3. Cost sensitive Bayes consistent classifier design

In this section we extend the connections between risk minimization and probability elici-
tation to the cost-sensitive setting. We start by reviewing the cost-sensitive zero-one loss.

3.1 Cost-sensitive zero-one loss

The cost-sensitive extension of the zero-one loss is

LC1,C−1(f, y) =

1− sign(yf)

2

(
C1

1− sign(f)

2
+ C−1

1 + sign(f)

2

)

=


0, if y = sign(f);
C1, if y = 1 and sign(f) = −1
C−1, if y = −1 and sign(f) = 1,

(17)

where C1 is the cost of a false negative and C−1 that of a false positive. The associated
conditional risk is

CC1,C−1(η, f) =

C1η
1− sign(f)

2
+ (1− η)C−1

1 + sign(f)

2
=

=

{
C−1(1− η), if f ≥ 0;
C1η, if f < 0,

(18)
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and is minimized by any predictor that satisfies (5) with γ = C−1

C1+C−1
. Examples of optimal

predictors include f∗(η) = (C1 + C−1)η − C−1 and f∗(η) = log ηC1

(1−η)C−1
. The associated

optimal classifier h∗ = sign[f∗] implements the cost-sensitive Bayes decision rule, and the
associated minimum conditional (cost-sensitive) risk is

C∗C1,C−1
(η) = C1η

(
1

2
− 1

2
sign [f∗(η)]

)
+

C−1(1− η)

(
1

2
+

1

2
sign [f∗(η)]

)
(19)

with f∗(η) = (C1 + C−1)η − C−1. We show that the minimum cost sensitive zero-one risk
is equivalent to the minimum cost sensitive Bayes error.

Theorem 3 The minimum risk associated with the cost sensitive zero-one loss is equal to
the minimum cost sensitive Bayes error.

Proof

R∗C1,C−1
= EX [C∗C1,C−1

(η)] =

∫
P (x)C∗C1,C−1

(P (1|x))dx = (20)∫
P (1|x)≥γ

(
P (x|1) + P (x| − 1)

2
)(C−1(1− P (x|1)

P (x|1) + P (x| − 1)
))dx+ (21)∫

P (1|x)<γ
(
P (x|1) + P (x| − 1)

2
)(C1(

P (x|1)

P (x|1) + P (x| − 1)
))dx = (22)

1

2

∫
P (1|x)≥γ

C−1P (x| − 1)dx+
1

2

∫
P (1|x)<γ

C1P (x|1)dx = (23)

1

2
(C−1ε

γ
1 + C1ε

γ
2) = εC1,C−1 (24)

where εγ2 and εγ1 are the miss rate and false positive rate associated with the cost sensitive
threshold γ and εC1,C−1 is the cost sensitive Bayes error rate. We have also assumed, without
loss of generality, that the prior probabilities are equal.

The next theorem highlights some fundamental properties of the minimum conditional
cost-sensitive zero-one risk.

Theorem 4 The risk of (19) has the following properties:

1. a maximum at η∗ = C−1

C1+C−1

2. symmetry defined by, ∀ε ∈
[
0, 1

C1+C−1

]
,

C∗ (η∗ − C−1ε) = C∗ (η∗ + C1ε) , (25)

Proof Note that (19) can be written as

C∗C1,C−1
(η) =

{
C−1(1− η), if f∗ ≥ 0;
C1η, if f∗ < 0,

(26)
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The two lines C−1(1− η) and C1η intersect and form the maximum at η = C−1

C1+C−1
.

When ε = 0 we have the trivial case of C∗
(

C−1

C1+C−1

)
= C∗

(
C−1

C1+C−1

)
.

When 0 < ε ≤ 1
C1+C−1

we have η = C−1

C1+C−1
− C−1ε <

C−1

C1+C−1
in which case from (5),

f∗ < 0 and

C∗C1,C−1
(η) = C1η = C1

(
C−1

C1 + C−1
− C−1ε

)
=

C1C−1

C1 + C−1
− C1C−1ε (27)

When 0 < ε ≤ 1
C1+C−1

we also have η = C−1

C1+C−1
+ C1ε >

C−1

C1+C−1
in which case from

(5), f∗ > 0 and

C∗C1,C−1
(η) = C−1(1− η) = C−1

(
1− C−1

C1 + C−1
− C1ε

)
=

C1C−1

C1 + C−1
− C1C−1ε (28)

Thus proving that

C∗C1,C−1

(
C−1

C1 + C−1
− C−1ε

)
= C∗C1,C−1

(
C−1

C1 + C−1
+ C1ε

)
=

C1C−1

C1 + C−1
− C1C−1ε (29)

As noted by the following lemma, property 2. is in fact a generalization of property 1.

Lemma 1 Any concave function with the symmetry of (25) also has property 1. of Theo-
rem 4.

Proof Taking the derivative of (25) at ε = 0 leads to

C∗
′
(

C−1

C1 + C−1

)
(−C−1) = C∗

′
(

C−1

C1 + C−1

)
(C1) (30)

which is satisfied only when C∗
′
(

C−1

C1+C−1

)
= 0. Given that C∗ is a concave function, C∗ is

maximum at η = C−1

C2+C−1
.

3.2 Cost-sensitive Bayes consistent margin losses

We extend the other losses used in machine learning to the cost-sensitive paradigm by
introducing the following set of margin loss function

Lφ,C1,C−1(f, y) = φC1,C−1(yf)

=

{
φ1(f), if y = 1
φ−1(−f), if y = −1.

(31)

The associated conditional risk is

Cφ,C1,C−1(η, f) = ηφ1(f) + (1− η)φ−1(f) (32)

and is minimized by the predictor

f∗φ,C1,C−1
(η) = arg min

f
Cφ,C1,C−1(η, f). (33)
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This leads to the minimum conditional risk

C∗φ,C1,C−1
(η) = ηφ1(f∗φ,C1,C−1

(η))

+ (1− η)φ−1(−f∗φ,C1,C−1
(η)). (34)

Similar to the cost insensitive case, our choice of φi(·) in (31) cannot be arbitrary and
we require certain properties for the loss function. These desirable properties are addressed
by extending the approach of Masnadi-Shirazi and Vasconcelos (2008).

Theorem 5 Let g(η) be any invertible function, J(η) any convex function, and φi(·) de-
termined by the following steps:

1. use (11) and (12) to obtain the I1(η) and I−1(η), and let Cφ,C1,C−1(η, f) be defined by
(32).

2. set φ1(g(η)) = −I1(η) and φ−1(−g(η)) = −I−1(η).

Then g(η) = f∗φ,C1,C−1
(η) if and only if J(η) = −C∗φ,C1,C−1

(η).

Proof From 1. and Theorem 1, it follows that

ηI1(η̂) + (1− η)I1(η̂)

has maximum value J(η), when η̂ = η. From 2. the same holds for

−ηφ1(g(η̂))− (1− η)φ−1(−g(η̂))

and

J(η) = −ηφ1(g(η))− (1− η)φ−1(−g(η)).

It follows from (32)-(34) that, g(η) = f∗φ,C1,C−1
(η) if and only if J(η) = −C∗φ,C1,C−1

(η).

The theorem provides a generative method for designing the loss functions φi(·) starting
from any pair of invertible function g(η) and convex function J(η). The resulting loss
function will satisfy (32)-(34), when g(η) = f∗φ,C1,C−1

(η) and J(η) = −C∗φ,C1,C−1
(η).

What remains to be answered is how to choose f∗φ,C1,C−1
(η), and C∗φ,C1,C−1

(η) so as
to ensure cost sensitive Bayes consistency. The following theorem provides a sufficient
condition on f∗φ,C1,C−1

(η) for the Bayes optimality of the loss function.

Theorem 6 Any invertible predictor f(η) with symmetry

f−1(−v) =
2C−1

C1 + C−1
− f−1(v) (35)

satisfies the necessary and sufficient conditions for cost-sensitive optimality of (5) with
γ = C−1

C1+C−1
.
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Proof Assume that f(η) = v is monotonically increasing. Note that f−1(0) = C−1

C1+C−1

which along with η = f−1(v) leads to f( C−1

C1+C−1
) = 0. If η > C−1

C1+C−1
then from (35) we

have f−1(−v) < C−1

C1+C−1
, applying (35) again it follows that f(η) > C−1

C1+C−1
. Similarly, if

η < C−1

C1+C−1
then f(η) < C−1

C1+C−1
.

In other words, any predictor f∗φ,C1,C−1
(η) that satisfies (35) will be guaranteed to have

a conditional risk that is minimized by the cost-sensitive Bayes decision rule.
What remains to be discussed is how to specify C∗φ,C1,C−1

(η) which will determine the
risk of the optimal classifier. The goal is to approximate the minimum conditional cost-
sensitive zero-one risk (minimum cost sensitive Bayes risk) given in (19) as best as possible
so as to achieve the minimum cost sensitive Bayes error. This is formally presented in the
following theorem

Theorem 7 The minimum risk of any cost sensitive loss in the form of (31) and derived
from Theorem 5 can be made to be arbitrarily close, in the expectation, to the minimum cost
sensitive Bayes error by choosing the minimum conditional risk of the loss to be arbitrarily
close to the minimum conditional risk of the cost sensitive zero-one loss function.

Proof

R∗φ,C1,C−1
− εC1,C−1 = R∗φ,C1,C−1

−R∗C1,C−1
= (36)

EX [C∗φ,C1,C−1
]− EX [C∗C1,C−1

] = EX [C∗φ,C1,C−1
− C∗C1,C−1

] (37)

Where we have used Theorem 3 for the first equality.
While Theorem 7 says that the true measure for determining C∗φ,C1,C−1

is the expectation
of (37), Theorem 4 suggests a simpler rule of thumb for selecting C∗φ,C1,C−1

. Property 1.
assigns the largest risk to the locations on the classification boundary and requiring this
property for C∗φ,C1,C−1

would be vital. Also, enforcing Property 2. further guarantees that
the optimal risk has the symmetry of the minimum cost-sensitive Bayes risk.

Definition 2 A minimum risk C∗φ,C1,C−1
(η) is of

1. Type-I if it satisfies property 1. but not 2. of Theorem 4.

2. Type-II if it satisfies both properties 1. and 2.

Risks of type-II are generally closer approximations to the cost-sensitive Bayes risk than
those of type I. Although, strictly speaking the true measure is the expectation of (37).

The combination of Theorems 4-7 leads to a generic procedure for the design of cost-
sensitive classification algorithms, consisting of the following steps

1. select a predictor f∗φ,C1,C−1
(η) that satisfies (35).

2. select a concave minimum conditional risk using the measure of (37) or, as a simpler
rule of thumb alternative, select a concave minimum conditional risk C∗φ,C1,C−1

(η) of
type-I or type-II, which reduces to C∗φ(η) when C1 = C−1 = 1.

3. use (11) and (12) with J(η) = −C∗φ,C1,C−1
(η) to obtain I1(η) and I−1(η).
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4. find φi(·) so that I1(η) = −φ1(f∗φ,C1,C−1
(η)) and I−1(η) = −φ−1(−f∗φ,C1,C−1

(η)).

5. derive an algorithm to minimize the conditional risk of (32).

We next illustrate the practical application of this framework by showing that the cost-
sensitive exponential loss of Masnadi-Shirazi and Vasconcelos (2007) can be derived from a
minimal conditional risk of Type-I.

3.3 Cost-sensitive exponential loss

We start by recalling that AdaBoost is based on the loss φ(yf) = exp(−yf), for which it
can be shown that

C∗φ(η) = η

√
1− η
η

+ (1− η)

√
η

1− η

and f∗φ =
1

2
log

η

1− η
. (38)

A natural cost-sensitive extension is f∗φ,C1,C−1
(η) = 1

C1+C−1
log ηC1

(1−η)C−1
, which is easily

shown to satisfy (35). Noting that C∗φ(η) = η exp(−f∗φ) + (1 − η) exp(f∗φ), suggests the
cost-sensitive extension

C∗φ,C1,C−1
(η) = η

(
ηC1

(1− η)C−1

) −C1
C1+C−1

+

(1− η)

(
ηC1

(1− η)C−1)

) C−1
C1+C−1

. (39)

This does not have the symmetry of (25) but satisfies property 1. of Theorem 4. Hence, it
is a Type-I risk. It is also equivalent to (38) when C1 = C−1 = 1. Finally, steps 1. and 2.
of Theorem 5 produce the loss

φC1,C−1(yf) =

{
exp(−C1f), if y = 1
exp(C−1f), if y = −1

(40)

proposed in Masnadi-Shirazi and Vasconcelos (2007). The resulting cost-sensitive boosting
algorithm currently holds the best performance in the literature.

4. Cost sensitive SVM

Next we extend the hinge loss used in SVMs using the cost sensitive framework established
in the previous section. The cost sensitive SVM optimization problem is also derived.

The SVM minimizes the risk of the hinge loss φ(yf) = b1 − yfc+, where bxc+ =
max(x, 0). The associated risk is minimized by Zhang (2004)

f∗φ(η) = sign(2η − 1) (41)

resulting in the minimum conditional risk

C∗φ(η) = 1− |2η − 1|
= ηb1− sign(2η − 1)c+ + (1− η)b1 + sign(2η − 1)c+.
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Figure 1: Left: concave C∗φ,C1,C−1
(η) function and corresponding cost sensitive SVM loss

function, top: C1 = 4, C−1 = 2, bottom: C1 = C−1 = 1. Right: linearly separable
cost sensitive SVM.

We follow the generic procedure and replace the optimal cost-insensitive predictor by
its cost-sensitive counterpart

f∗φ,C1,C−1
(η) = sign((C1 + C−1)η − C−1). (42)

which can be directly shown to satisfy (5). This suggests choosing the cost-sensitive mini-
mum conditional risk

C∗φ,C1,C−1
(η) = ηbe− d · sign((C1 + C−1)η − C−1)c+ + (43)

(1− η)bb+ a · sign((C1 + C−1)η − C−1)c+,

which can be shown to satisfy (25) if and only if

d ≥ e a ≥ b and
C−1

C1
=
a+ b

d+ e
. (44)

The hinge loss minimum conditional risk satisfies the conditions of a Type-II loss function
and is also a close approximation of the zero-one minimum conditional risk under the criteria
of Theorem -7.

After steps 1. and 2. of Theorem 5,

φC1,C−1(yf) =

{
be− dfc+, if y = 1
bb+ afc+, if y = −1.

(45)

This loss has four degrees of freedom, which control the margin and slope of the hinge
components associated with the two classes: positive examples are classified with margin e

d

and hinge loss slope d, while for negative examples the margin is b
a and slope a.
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4.1 Cost-sensitive SVM learning

We consider the case where errors in the positive class are weighted more heavily, leading to
the inequalities b

a ≤
e
d and d ≥ a. Choosing e = d = C1 normalizes the margin of positive

examples to unity ( ed = 1). Selecting b = 1 then fixes the scale of the negative component
of the hinge loss, leading to a = 2C−1−1. The resulting cost sensitive SVM loss function is

φC1,C−1(yf) = 1{y=1}C1b1− yfc+ + 1{y=−1}b1− (2C−1 − 1)yfc+ (46)

and the cost sensitive SVM minimal conditional risk is

C∗φ,C1,C−1
(η) = (47)

ηbC1 − C1 · sign((C1 + C−1)η − C−1)c+ +

(1− η)b1 + (2C−1 − 1) · sign((C1 + C−1)η − C−1)c+

with C−1 ≥ 1 and C1 ≥ 2C−1 − 1, so as to satisfy (44). Figure 1 presents plots of (47)
and (46), for both C1 = 4, C−1 = 2 and the cost insensitive case of C1 = 1, C−1 = 1
(standard SVM). Note that, for the cost-sensitive SVM, the positive class has a unit margin,
while the negative class has a smaller margin of 1

3 . Also, the slope of the positive component
of the loss is 4 while the negative component has a smaller slope of 3. In this way, the loss
assigns a higher cost to errors in the positive class when the data is not separable, while
enforcing a larger margin for positive examples when the data is separable. Replacing the
standard hinge loss with (45) in the standard SVM risk Moguerza and Munoz (2006)

argmin
w,b

∑
{i|yi=1}

bC1 − C1(wTxi + b)c+ +
∑

{i|yi=−1}

b1 + (2C−1 − 1)(wTxi + b)c+ +
1

2C
||w||2, (48)

leads to the primal problem

argmin
w,b,ξi

1

2
||w||2 + C

C1

∑
{i|yi=1}

ξi +
1

κ

∑
{i|yi=−1}

ξi


subject to (wTxi + b) ≥ 1− ξi; yi = 1

(wTxi + b) ≤ −κ+ ξi; yi = −1

(49)

with

κ =
1

2C−1 − 1
, 0 < κ ≤ 1 ≤ 1

κ
≤ C1. (50)

This is a quadratic programming problem similar to that of the standard cost-insensitive
SVM with soft margin weight parameter C. In this case, cost-sensitivity is controlled by
the parameters C1,

1
κ , and κ. The parameter κ is responsible for cost-sensitivity in the

separable case. Under the constraints C−1 ≥ 1, C1 ≥ 2C−1 − 1, (0 < κ ≤ 1 ≤ 1
κ ≤ C1), of

a type-II risk, it imposes a smaller margin on negative examples. On the other hand, C1

and 1
κ control the relative weights of margin violations, assigning more weight to positive

violations. This allows control of cost-sensitivity when the data is not separable.
Obviously, this primal problem could be defined through heuristic arguments. However,

it would be difficult to justify precise choices for the parameters of (50). Furthermore, the

13



derivation above guarantees that the optimal classifier implements the Bayes decision rule
of (5) with γ = C−1

C1+C−1
, and its risk is a type-II approximation to the cost-sensitive Bayes

risk. No such guarantees would be possible for an heuristic solution.

To obtain some intuition about the cost-sensitive extension, we consider the synthetic
problem of Figure 1, where the two classes are linearly separable. The figure shows three
separating lines. The green line is an arbitrary separating line that does not maximize the
margin. The red line is the standard SVM solution, which has maximum margin and is
equally distant from the nearest examples of the two classes. The blue line is the solution
of (49) for C1 = 4 and C−1 = 2 (the C parameter is irrelevant when the data is separable).
It is also a maximum margin solution, but trades-off the distance to positive and negative
examples so as to enforce a larger positive margin, as specified. Overall, an increase in C−1

(decrease in κ) guarantees a larger positive margin. For a given C−1, increasing C1 (so that
C1 ≥ 2C−1 − 1) increases the cost of errors on positive examples, enabling control of the
miss rate when the classes are not separable.

We note that for the separable case, a limited level of cost sensitive performance can
be achieved using the BP-SVM formulation of (1) along with a small weight parameter C
(C < 1

2), but a small C is undesirable in general as it leads to an under trained model with
training errors even when the data is separable. The CS-SVM formulation, on the other
hand, provides a maximum margin solution regardless of the chosen weight parameter C
. The CS-SVM is preferable even in the inseparable case because increasing the weight
parameter C, in an attempt to reduce training error, inevitably leads to over training in the
BP-SVM formulation. This is not necessarily the case for the CS-SVM formulation which
allows a decrease of the margin of the negative samples (through an appropriate choice
of κ) and a relative increase in the margin of the positive samples, independent of the
weight parameter C and does not lead to over training. In other words, unlike the BP-SVM
formulation, the CS-SVM does not simply over train on the positive class, it maximizes
the margin on this class. This can also be seen, with added clarity, in the dual CS-SVM
formulation which is discussed in the next section.

5. Cost-sensitive SVM in the dual

The dual and kernelized formulation of the CS-SVM of (49) can be derived as

argmax
α

∑
i

αi

(
yi + 1

2
− κ(yi − 1)

2

)
− 1

2

∑
i

∑
j

αiαjyiyjK(xi, xj)

subject to
∑
i

αiyi = 0

0 ≤ αi ≤ CC1; yi = 1

0 ≤ αi ≤
C

κ
; yi = −1

(51)

which reduces to the standard SVM dual when C1 = C−1 = 1. Unlike the previous BM-SVM
and BP-SVM algorithms, the CS-SVM algorithm performs regardless of the separability of
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the data and the chosen slack penalty C. This can be further studied in detail by writing
the dual problem (51) as

argmax
α

∑
i

α+
i + κ

∑
i

α−i −
1

2

∑
i

∑
j

αiαjyiyjK(xi, xj)

subject to
∑
i

αiyi = 0

0 ≤ α+
i ≤ CC1

0 ≤ α−i ≤
C

κ

(52)

with

0 < κ ≤ 1 ≤ 1

κ
≤ C1 (53)

αi
+ = {αi|yi = 1}, αi

− = {αi|yi = −1}.

Moreover, since αi ≥ 0 and κ = 1− (1−κ) we can rewrite (52) with an `1-norm norm term
as

argmax
α

− 1

2
αTY KY α+ 1Tα− (1− κ)‖α−‖1

subject to αT y = 0

0 � α+ � CC1

0 � α− � C

κ
.

(54)

where Y = Diag(y) and 1 is the vector of all ones.

When C1 = 1 and κ = 1, i.e. C−1 = 1, the problem of (54) reverts to the standard SVM
dual formulation. This implies that (54) is totally compatible with standard dual solvers
and its implementation on existing SVM dual solvers is a non-issue.

If we transform problem (54) into a minimization problem, the term ‖α−‖1 acts as an
`1-norm regularization term with positive coefficient (1 − κ). Another difference with the
standard cost insensitive SVM (CI-SVM) and BP-SVM dual problem is that in (54), the
upper bounds on α+ and α− are scaled differently. In particular, because 1

κ ≤ C1, the active
upper bound constraints on α+

i are relaxed, compared to α−i . In summary, the CS-SVM
dual problem (54) has two major differences compared to the CI-SVM dual problem:

1. `1-norm regularization on α−.

2. relaxed inequality constraints on α+.

These modifications have nontrivial consequences which connect regularization theory and
sensitivity analysis to cost-sensitive learning. We study the implications of these modifi-
cations by first representing the CI-SVM dual problem as a regularized risk minimization
problem which allows us to explain the extra regularization term −(1−κ)‖α−‖1 for both the
case of cost sensitive learning and imbalanced learning problems. Subsequently, we study
the affect of relaxing the inequality constraint on α+ using sensitivity analysis.
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Figure 2: (a) The Checkerboard dataset with imbalance ratio 1:1000, (b) classification result
of BM-SVM (c) classification result of BP-SVM with C1 = 100 and C−1 = 1
(CS-SVM with κ = 1), (d) classification result of CS-SVM with κ = 0.5, (e)
classification result of CS-SVM with κ = 0.25, (f) classification result of CS-SVM
with κ = 0.1, (g) classification result of CS-SVM with κ = 0.01, (h) classification
result of CS-SVM with κ = 0.001.

5.1 Regularization on Lagrange multipliers

In this subsection we study the effects of `1-norm regularization on α− in the dual problem,
while considering imbalanced dataset learning and cost-sensitive learning separately.

5.1.1 Imbalanced dataset learning

In many applications examples from the target (positive) class are outnumbered by the non-
target class. Moreover, in multi-class classification problems where the number of classes
are large and a one-versus-all scheme is used, the number of examples in each individual
class is usually small compared to the rest of the examples, leading to a highly imbalances
problem. These sorts of imbalances occur with different intensity, with ratios between the
minority and majority class ranging from 1:10 to 1:106 Provost and Fawcett (2001).

For the SVM training problem, the number of support vectors grows linearly with the
number of examples Steinwart (2004), and this implies that the number of support vectors
for each class grows linearly with the number of examples of that class. Therefore, the
same imbalance, if not worse, happens in the number of nonzeros in of the solution. In
other words, when the dual problem is solved, most of the support vectors belong to the
majority class. The problem becomes more apparent when we take into account the equality
constraint of (54)
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∑
i

αiyi = 0, (55)

which implies

‖α+‖1 = ‖α−‖1 (56)

Also, results of Steinwart (2004) implies that for imbalanced datasets

‖α+‖0 � ‖α−‖0. (57)

This results in an irregular solution, with the α+
i s taking values close to the upper bound C

and the α−i s taking values close to the lower bound zero. Wu and Chang (2005) illustrated
this problem by conducting an experiment on a 2D Checkerboard dataset with different
imbalance ratios as seen in Figure 2(a) . They showed that in the case of imbalanced data,
the decision boundary is unwillingly shifted toward the minority class. This is because
of a lack of enough examples (support vectors) for the minority class that reside close to
the correct decision boundary. When enough examples don’t exist at the right place, the
margin relies on other examples farther away from the ideal decision boundary, resulting in
the decision boundary shifting toward the minority class. They also equivalently illustrated
that this is caused by irregular values in the dual variables. This problem persists in
the BM-SVM and BP-SVM formulation as a result of their flawed implementation of the
asymmetric margin, and can be seen in Figure 2 which show the classification results for
the BM-SVM, BP-SVM and CS-SVM on the Checkerboard dataset.

Given that for imbalanced dataset problems the vector α− has small non sparse elements
while the vector α+ is highly sparse (57), the natural remedy is to regularize the non-
sparse part of the solution, α−, with a sparsity inducing `1-norm regularizer Boyd and
Vandenberghe (2004). This leads to a sparse α−, at the solution which is now both balanced
and regularized. The CS-SVM problem (54) uses the same technique to deal with the
problem of imbalanced datasets by choosing appropriate choice of κ. As κ tends to zero
the regularization coefficient (1 − κ) increases resulting in an increased regularization of
the α−i s, which enforces larger margin for minority (positive) class. Figure 2(g) shows
that for a highly imbalanced checkerboard data, an small κ = 0.01 corrects the decision
boundary, close to the optimal one. Choosing κ < 0.01 violates the condition (53) and has
a diminishing return, i.e., leads to preferring the majority class as shown in Figure 2(h).

Also, Figure 3 illustrates the effect of the CS-SVM regularization on the number of
support vectors of each class in the solution. The CS-SVM algorithm with different choices
of κ is applied to the covertype UCI dataset which is imbalanced with a ratio of 1:211,
which as the regularization coefficient (1− κ) increases, α− becomes sparser (Figure 3(a)).
This leads to an equivalence between the number of non-zero components of α− and α+

(Figure 3(b)).
Therefore, the CS-SVM in the dual, applies a sparsity inducing `1-norm regularization

on the α− and when dealing with imbalanced datasets, the CS-SVM implicitly prevents
unwanted movement of the discriminant boundary toward the minority class by enforcing
margin to be asymmetric.
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Figure 3: The CS-SVM algorithm for different choices of κ is applied to the covertype UCI
dataset which is imbalanced with a ratio of 1:211. Starting at κ = 1, CS-SVM
acts as the BP-SVM. (a) shows the reduction in the number of α− as κ decreases
and (b) shows the reduction in the imbalance ratio as κ decreases. As κ decreases
the number of negative support vectors is reduced so that by κ = 2−256 the
imbalance ratio between support vectors approaches 1.

5.1.2 Cost-sensitive learning

As shown in the previous section, regularization of any class results in a smaller margin
for that class. So, in the cost-sensitive learning setting which costs are known, CS-SVM
reduces the margin for the class with the lower cost, or equivalently increases the margin
for the class with the higher cost.

In general, the extra `1-norm regularization in the CS-SVM dual problem makes the
margin asymmetric, in favor of the minority class or the class with higher cost for imbalanced
data learning and cost-sensitive learning, respectively.

5.2 Regularization on basis expansion coefficients

In the previous section we showed how the Lagrange dual Boyd and Vandenberghe (2004)
of the CS-SVM performed `1-norm regularization on the support vectors. Rather, in this
section we show that the Fenchel dual Rockafellar (1970) of the CS-SVM performs `1-norm
regularization on the basis coefficients of the discriminant function. A general regulariza-
tion problem Tikhonov and Arsenin (1977) for given dataset D, loss function L, trade-off
hyperparameter C, regularizer Ω and Hilbert space H can be written as

argmin
f∈H

Ω(f) + L(f ;D, C) (58)
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Primal Max. Margin Sep.(w,Ψ, φ)“? : kijunds
OO

Dual

��

oo
wTΨi↔βTKi

ΨTΨ↔K
// Reg. Risk Min.(β,K, φ)

OO

Dual

��

Dual Dual of: Max. Margin Sep.(α,K, φ∗) oo
K↔K−1

α↔Y K−1z // Reg. Risk Min.(z,K−1, φ∗)

Figure 4: The commutative diagram for existing SVM formulations essentially depends on
associated parameter spaces w,α, β, z and feature spaces Ψ,K,K−1. The matrix
ΨT is the Cholesky factor of K, i.e. K = ΨTΨ, with its ith row corresponding to
the feature space representation of the example xi, i.e., Ψi = ϕ(xi).

which by representer theorem Schölkopf and Smola (2001), (60) has a minimizer of form of

f(x) =
∑
xi∈D

βiK(x, xi) + b. (59)

which for Hing loss φ, the primal problem becomes Chapelle (2007):

argmin
β,b

1

2
βTKβ +

∑
i

φ(yi(β
TKi + b)) (60)

where Ki is the ith column of the kernel matrix. As shown in the Appendix A, the Fenchel
dual problem of (60) can be written as

argmax
z

−Ω∗(g)−
∑
i

φ∗(yigi) (61)

which z ∈ Rn is dual variable, and g = K−1z is the dual decision function. Figure 4 depicts
the relationship between problem (63) for the existing SVM formulations.

As shown in the Appendix A, the CS-SVM dual problem can be written as a regularized
risk minimization problem

argmax
z

−Ω∗(g)−
∑
i

φ∗
BP

(yigi)− (1− κ)‖g−‖1 (62)

which g− is a vector of gis which yi = −1.
Also, by substituting Ω∗, φ∗

BP
(see Appendix A) and setting 1 g = K−1z we have

argmax
z

− 1

2
zTK−1z + yT g − (1− κ)‖g−‖1

subject to ‖g+‖1 = ‖g−‖1
0 � g+ � CC1

0 � −g− � C

κ

(63)

1. Note that f(xi) = KT
i β and gi = g(xi) = zTK−1

i are primal and dual decision functions.
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There are several points to make:

• By setting Y K−1z = Y g = α, we can retrieve the SVM’s dual problem (54), which
by using the fact that β = Y α Chapelle (2007), we have g = β in (59), (60) and (63).
This reveals an interesting duality property: f = z and g = β, i.e. primal variable is
equal to dual decision function and vice versa.

• The `1-norm regularization term and equality constraint in (63) can be regarded w.r.t
either basis expansion coeeficients β or dual decision values g.

Compared to CI-SVM and BP-SVM dual problems, problem (63) performs an extra `1-
norm regularization on the basis expansion coefficients which has a different interpretation
in imbalanced data learning and cost-sensitive learning:

Imbalanced Data Learning The quantities ‖β+‖0 and ‖β−‖0 reflect the number of
basis functions of each class which contribute the decision function, which similar to their
α-counter parts they are highly imbalanced, i.e., ‖β+‖0 � ‖β−‖0. This means that the
discriminant function is mostly made up of data-dependent kernel bases of the majority
class. which leads to over train on the majority class while under training the minority
class. Similar to basis pursuit Chen et al. (1999), CS-SVM adds a `1-norm regularization
on the basis expansion coefficients to alleviate the problem of over-training on the majority
class by balancing the number of basis functions contributing to the decision function.

Cost-sensitive learning In the cost-sensitive learning setting, errors of misclassifying
one class is higher than the other class and we can translate this to the learning algorithm
by choosing more basis functions of the target class. This idea can be implemented by
performing `1-norm regularization on the expansion coefficients of the lower-cost class (β−)
(63).

6. Example-dependent cost-sensitive learning

In many applications such as computational advertising Agarwal (2011), medical diagnosis
Turney (2000), information retrieval Martin Szummer (2011), fraud detection Fawcett and
Provost (1997); Stolfo et al. (2000) and business decision-making Zadrozny et al. (2003) the
cost of misclassifying an individual example differs from other examples including those of
the same class. This gives rise to the concept of example-dependent cost-sensitive (ED-CS)
learning.

There main methods to ED-CS learning is direct cost-sensitive method Zadrozny and
Elkan (2001), which considers a threshold for each example according to its costs, i.e.

h(xi, C1, C−1) =

{
1, η

1−η ≥
C−1

C1

−1, otherwise
(64)

MetaCost Domingos (1999) changes the labels of training set according to (64), and then
trains with the new labels. Zadrozny et al. (2003) and Brefeld et al. (2003) proposed meth-
ods where the training examples are resampled according to the example cost probability
distribution of the data. Despite their simplicity, resampling methods may suffer from over
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fitting caused by duplicate examples. More recently, Scott (2011) proposed, but did not
to implemented, an example-based version of BP-SVM loss function which we call ED-BP-
Hinge. The ED-BP-Hinge loss is defined for each example with label y, decision value f
and cost c as

φ(y, f, c) = cb1− yfc+ (65)

In dealing with the example dependent cost sensitive learning problem we extend the
CS-SVM loss of (45) to the ED-CS-Hinge defined as

φ(y, t, c) =

{
cb1− ytc+, for y = +1,

b1− (2c− 1)ytc+, for y = −1.
(66)

the ED-CS-Hinge loss function inherits the benefits of the CS-SVM loss including the added
flexibility of choosing an asymmetric margin of the loss when compared to the ED-BP-Hinge.
In the experimental study we implement an example dependent cost sensitive SVM based
on the ED-CS-Hinge loss and show an improvement over the ED-BP-Hinge based SVM and
other SVM based algorithms on the KDD98 dataset.

7. Performance measure

The evaluation of cost sensitive algorithms requires a flexible performance measure that can
incorporate different costs and priors. We adopt the cost sensitive zero-one risk which can
be written as

RCS = EY,X[LC1,C−1(f(x), y)|X = x]

=
∑
y

∑
x

PX|Y(X = x|Y = y)PY(y)LC1,C−1(f(x), y)

=
∑
y

PY(+1)
∑
x

PX|Y(X = x|Y = +1)LC1,C−1(f(x),+1)

+
∑
y

PY(−1)
∑
x

PX|Y(X = x|Y = −1)LC1,C−1(f(x),−1)

= P1C1PFN + P−1C−1PFP (67)

where P1 and P−1 are the class priors and PFN and PFP are the false negative and false
positive rates respectively. This performance measure readily simplifies to the well known
probability of error measure RCI = P1PFN + P−1PFP , which we call cost insensitive risk.

Finding the best cost sensitive zero-one risk of (67) can be as an instance of vector
optimization problem. Each classifier produces a set of vectors (PFP , PFN ) which should be
compared w.r.t. in nonnegative orthant, i.e., R2

+) which induces component wise inequality
in R2

+. The minimal elements of this set comprise the Pareto optimal frontier Boyd and
Vandenberghe (2004) which is also known as the ROC curve in detection theory. Different
points on the ROC of a classifier can be found by the vector scalarization optimization
problem of

min
PFP ,PFN

λ1PFP + λ2PFN (68)
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Figure 5: ROC curve of CI-SVM (left), BP-SVM (middle), and CS-SVM (right) on test
examples of german dataset which costs are known. For given costs, the objective
function is depicted with a black line and the best operating points is shown by
Risk∗. Also, risks associated with the models which tuned by a threshold in the
training phase is denoted by TH-Risk and risk of the models without thresholding
is also shown (NOTH-Risk).

Choosing (λ1, λ2) = (P1C1, P−1C−1) results in the following optimization problem

min
PFP ,PFN

P1C1PFP + P−1C−1PFN . (69)

which has an objective function equal to the cost sensitive zero-one risk of (67). This means
that by using the cost sensitive zero-one risk as the performance measure and choosing
a certain (P1C1, P−1C−1) we are in fact finding a certain optimal point on the classifier
ROC curve that corresponds to (λ1, λ2) = (P1C1, P−1C−1). We use the term minimum risk
instead of minimum cost-sensitive zero-one risk in the rest of the paper.

When the (P1C1, P−1C−1) are known, we simply use them in the evaluation of the
classifier as well as finding the best threshold Figure 7.

When the costs or priors of a problem are not known, a single point on ROC curve
might not be a robust performance measure for the classifier. So we evaluate the risk at all
points within a low FP or low TPof the ROC. This is equivalent to finding the t-AUC Wu
et al. (2008) which evaluates the area under the ROC curve within the 1 to t true negative
regions. we extend this method and propose the TP-t-AUC and TN-t-AUC to evaluate the
area under the ROC curve within the 1 to t true positive and 1 to t true negative regions
respectively. In the experiments we specifically report both the TP-t-AUC and TN-t-AUC
in order to demonstrate the CS-SVM’s ability in learning models with both high sensitivity
and high specificity.

8. Experimental study

In this section we conduct extensive experiments on 21 real world datasets and com-
pare the BM-SVM, BP-SVM and CS-SVM algorithms. The experiments are grouped into
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four types namely cost-sensitive learning with available class-dependent costs (CSA), cost-
sensitive learning when class-dependent costs are unavailable(CSU), cost-sensitive learning
with example-dependent costs (CSE) and imbalanced dataset learning(IDL). The datasets
and experiments are further explained in the following sections.

8.1 Datasets

21 datasets, created from 20 distinct datasets, are used to compare the performance of
the CS-SVM algorithm with other algorithms under different scenarios. Table 1 shows the
detailed specifications of each dataset. Each dataset is associated with a type of experiment.
For example, the KDD98 dataset is used in the CSE experiment and datasets with large
class imbalance ratios are used in IDL experiments. For each dataset we choose the class
with the higher cost or fewer data points as the target or positive class. All multi-class
datasets were converted to binary datasets. In particular, the binary datasets SIAM(1) and
SIAM(2) are datasets which have been constructed from the same multi-class dataset but
with different target class and thus different imbalance ratios. 2

8.2 Setup

The RBF Gaussian kernel k(x, x′) = exp−γ‖x− x′‖2 is used for all SVM algorithms. We
choose the hyperparameters of C and γ by performing a 2D grid search and optimizing
the associated performance measure (risk, TP/TN-t-AUC or income). A more elaborate
algorithm for hyperparameter selection in CS-SVMs is developed by Gu et al. (2015, 2017).
Given that the size of the datasets are very different, we avoid over fitting by considering a
specific search range and granularity for each dataset, but use the same range and granular-
ity for all algorithms. In each iteration of the grid search, the performance is evaluated by
10 fold cross-validation for small datasets and evaluated on a separated validation set for
large datasets which appear in bold font in Table 1. Once the 2D grid search is complete,
the hyper parameters are used to train the BM-SVM. Also, the kernel hyper parameter is
used for training both the BP-SVM and the CS-SVM.

Without loss of generality, we set C−1 = 1 in the BP-SVM experiments. Therefore, when
considering the BP-SVM experiments we only need to perform an additional 2D grid search
for C and C1. The CS-SVM actually has four independent hyper parameters, including γ.
We perform a 3D grid search on C, C1 and κ when the costs are not known, and a 2D search
on C and κ when the costs C1 and C−1 are available. Note that in the case of available
costs (CSA), setting κ to a value other than κ = 1

2C−1−1 implicitly means that C−1 is set
to a value other than its determined value. However, we deliberately allow this in order
to make use of the CS-SVM algorithm’s asymmetric margin advantages. Nevertheless, we
use the determined cost of C−1 during performance evaluation. 3. Finally, we use the TP-
0.9-AUC and TN-0.9-AUC performance measures when considering the IDL and CSU type
experiments since the costs are not explicitly known in these experiments.

2. SIAM, Web Spam, IJCNN, MNIST, KDD99 and Covertype data sets were obtained from the LIBSVM
data website.http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets

3. The source code for CS-SVM is available at http://www.svcl.ucsd.edu/projects/costlearning
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Table 1: Specifications of the benchmark datasets. # of Ex. is the number of example data
points. # of Feat. is the number of features. Ratio is the class imbalance ratio.
Target specifies the target or positive class. Type specifies the type of experiment
conducted on this dataset.

Dataset # of Ex. # of Feat. Ratio Target Type
German Credit 1,000 24 1:2 Bad (2) CSA
Heart 270 13 1:1 Presence (2) CSA
KDD 99 (Intrusion Detection) 5,209,460 42 1:4 Normal CSA
KDD 98 (Donation) 191,779 479 1:20 2 CSE
Breast Cancer Diagnostic 569 32 1:2 Malignant (M) CSU
Breast Cancer Original 699 10 1:2 Malignant (4) CSU
Diabetes 768 8 1:2 Has Diabet (+1) CSU
Echo-cardiogram 132 12 1:2 Alive (1) CSU
Liver 345 6 1:1 1 CSU
Sonar 208 60 1:1 +1 CSU
Tic-Tac-Toe 958 9 1:2 Negative CSU
Web Spam 350,000 254 1:2 -1 CSU
Breast Cancer Prognostic 198 34 1:3 Recur ( R ) IDL
Covertype 581,012 54 1:211 Cottonwood/Willow(4) IDL
Hepatits 155 20 1:4 Die (1) IDL
IJCNN 141,691 2 1:10 +1 IDL
Isolet 7,797 617 1:25 K (11) IDL
MNIST 70,000 780 1:10 5 IDL
SIAM1 28,596 30438 1:2000 1,6,7,11 IDL
SIAM11 28,596 30438 1:716 11,12 IDL
Survival 306 3 1:3 2 IDL

8.3 Implementation

The CS-SVM problem (54) is readily implemented in the dual by modifying the LibSVM
Chang and Lin (2011) source code. This is done by 1) adding the regularization term to the
LibSVM objective function and 2) selecting C1 = C1 and C−1 = 1

κ as the cost parameters.
As a result, C, γ, C1 and 1

κ are the CS-SVM solver hyper parameters.

8.4 Experiments on cost-sensitive learning with known class-dependent costs

For these set of experiments, we compare test Risk of datasets corresponding to the point on
ROC curve which determined by the threshold that is found in the training phase (Figure
7). Three datasets with known class costs are examined. Namely, the German credit card
dataset Geibel et al. (2004); Newman et al. (1998), the Statlog Heart Disease Newman
et al. (1998) and KDD99 Elkan (2000) datasets are considered. The minimum risk using
the BM-SVM, BP-SVM and CS-SVM is shown in Table 2 for each of the CSA datasets.
The CS-SVM algorithm outperforms the BP-SVM on all datasets, surpasses the BM-SVM
on two and ties with the BM-SVM on one dataset.
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Table 2: Expected risk of datasets with known class-dependent costs.

Dataset BM-SVM BP-SVM CS-SVM SVM+SMOTE CS-SVM+SMOTE
German Credit 0.26 0.6 0.25
Heart 0.09 0.1 0.09
KDD 99 0.054 0.054 0.045

Table 3: TP-0.9-AUC on datasets with unknown class costs.

Dataset BM-SVM BP-SVM CS-SVM SVM+SMOTE CS-SVM+SMOTE
Breast Cancer D. 0.988 0.989 0.991 0.984 0.988
Breast Cancer O. 0.993 0.994 0.994 0.984 0.992
Breast Cancer P. 0.659 0.669 0.686 0.610 0.666
Covertype 0.976 0.993 0.993 0.855 0.992
Diabetes 0.858 0.881 0.887 0.848 0.891
Echo-cardiogram 0.938 0.950 0.951 0.770 0.933
Hepatitis 0.760 0.787 0.907 0.873 0.887
IJCNN 0.989 0.991 0.993 0.994 0.994
ISOLET 0.995 0.997 0.997 0.976 0.976
Liver 0.778 0.784 0.787 0.773 0.791
MNIST 0.992 0.994 0.994 0.990 0.992
SIAM1 0.718 0.743 0.752 0.671 0.733
SIAM11 0.680 0.698 0.718 0.669 0.685
Sonar 0.917 0.917 0.917 0.917 0.938
Survival 0.680 0.697 0.767 0.713 0.755
Tic-Tac-Toe 0.903 1.000 1.000 1.000 1.000
Web Spam 0.989 0.989 0.991 0.984 0.991

8.5 Experiments on cost-sensitive learning with unknown class-dependent
costs

We consider eight datasets which do not have known costs and are not highly imbalanced.
Namely, we examine the Breast Cancer Diagnostic, Breast Cancer Original, Pima Indian
Diabets, Echo-cardiogram, Liver, Sonar, Tic-Tac-Toe Newman et al. (1998) and Web Spam
Webb et al. (2006) datasets. The CS-SVM exhibits improved TP-0.9-AUC (Table 3) and
TN-0.9-AUC (Table 4) performance compared to BP-SVM and BM-SVM in 15 out of 16
experiments and ties in one experiment.

8.6 Experiments on imbalanced data learning

We examine large datasets with severe imbalance ratios to evaluate the merit of the proposed
CS-SVM algorithm on imbalanced data learning which could be the most prevailing problem
in practice. The CS-SVM exhibits improved TP-0.9-AUC (Table 3) and TN-0.9-AUC (Table
4) performance compared to BP-SVM and BM-SVM in 17 out of 18 IDL experiments and
ties in one experiment.
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Table 4: TN-0.9-AUC on datasets with unknown class costs.

Dataset BM-SVM BP-SVM CS-SVM
Breast Cancer D. 0.40 0.35 0.31
Breast Cancer O. 0.17 0.17 0.16
Diabetes 0.69 0.67 0.66
Echo-cardiogram 0.60 0.60 0.35
Liver 0.90 0.95 0.88
Sonar 0.70 0.62 0.60
Tic-Tac-Toe 0.93 0.87 0.86
Web Spam 0.03 0.03 0.02

Table 5: TP-0.9-AUC on imbalanced datasets.

Dataset BM-SVM BP-SVM CS-SVM
Breast Cancer P. 0.83 0.79 0.76 IDL
Covertype 0.034 0.020 0.016 IDL
Hepatits 0.56 0.40 0.36 IDL
IJCNN 0.091 0.034 0.031 IDL
Isolet 0.86 0.19 0.10 IDL
MNIST 0.053 0.019 0.017 IDL
SIAM1 0.76 0.30 0.29 IDL
SIAM11 0.70 0.70 0.70 IDL
Survival 0.89 0.88 0.87 IDL

8.7 Experiments on cost-sensitive learning with example-dependent cost

We study example-dependent cost-sensitive learning using the well known KDD98 dataset.
This dataset contains information about past contributors to charities. The task is to
classify individuals as donors or non-donors for a new charity so that overall donations are
maximized. The cost of sending mail and soliciting a donation is 0.68$ and the range of
possible donations is 1− 200$. We use the total profit performance measure Elkan (2001)
and evaluate the algorithms according to the benefit matrix shown in Table 7.

A range of different methods and algorithms have been previously used on this dataset
and some of the most profitable methods are listed in Table 8 and further explained. Wong
et al. (2005) proposed an ad-hoc algorithm which extracts Focused Association Rules (FAR)
for the KDD98 dataset. The FAR method consist of three subsequent algorithms of rule gen-
erating, model building and pruning and yields the best profit on the KDD98 dataset. The
example dependent MetaCost (ED-MetaCost) and direct cost-sensitive method (DCSM)
are both implemented by Zadrozny and Elkan (2001) and differ in the method used for
cost and probability estimation. Res-DIPOL and Res-ED-BP-SVM Geibel et al. (2004)
are resampling based algorithms equipped with DIPOL and ED-BP-SVM algorithms re-
spectively. For these methods the dataset is resampled according to a modified probability
distribution. Zadrozny et al. (2003) suggest two types of algorithms for cost sensitive learn-
ing. The first type are those that directly incorporate the costs into the learning algorithm
and the second type are black box methods that convert a cost insensitive algorithm into
a cost sensitive algorithm by resampling the data according to the example costs. The
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Table 6: TN-0.9-AUC on imbalanced datasets.

Dataset BM-SVM BP-SVM CS-SVM
Breast Cancer P. 0.87 0.81 0.80 IDL
Covertype 0.062 0.062 0.060 IDL
Hepatits 0.70 0.70 0.67 IDL
IJCNN 0.02 0.02 0.01 IDL
Isolet 0.86 0.19 0.10 IDL
MNIST 0.05 0.02 0.02 IDL
SIAM1 0.938 0.526 0.525 IDL
SIAM11 1.000 0.748 0.739 IDL
Survival 0.66 0.64 0.63 IDL

Table 7: Benefit matrix for the KDD98 dataset.
Donor Non-donor

Predicted Donor C+1i$ −0.68$
Predicted Non-donor −C+1i$ 0$

Polynomial kernel ED-BP-SVM (P-ED-BP-SVM) directly incorporates the costs into the
learning algorithm while the proposed black box SVM (BB-CI-SVM) and black box C4.5
(BB-C4.5) are examples of the second type proposed in Zadrozny et al. (2003).

Table 7 also shows results for the example dependent implementations of BM-SVM (ED-
BM-SVM), BP-SVM (ED-BP-SVM) and CS-SVM (ED-SV-SVM) with Gaussian kernels.
The ED-CS-SVM exhibits the best performance among all ED-SVM methods. It also ranks
fifth among all methods some of which use complicated and compounded schemes.

9. Conclusion

In this work, we have extended the recently introduced probability elicitation view of loss
function design to the cost sensitive classification problem. This extension was applied to
the SVM problem, so as to produce a cost-sensitive hinge loss function. A cost-sensitive
SVM learning algorithm was then derived, as the minimizer of the associated risk. Unlike
previous SVM algorithms, the one now proposed enforces cost sensitivity for both separable
and non-separable training data, enforcing a larger margin for the preferred class, indepen-
dent of the choice of slack penalty. It also offers guarantees of optimality, namely classifiers
that implement the cost-sensitive Bayes decision rule and approximate the cost-sensitive
Bayes risk. The dual problem of CS-SVM is studied and connections between cost-sensitive
learning and regularization theory and sensitivity analysis are established. Minimum ex-
pected cost-sensitive risk is considered as a metric for evaluating the performance of binary
classifiers in the cost-sensitive and imbalanced data settings. The CS-SVM is also read-
ily extended to cost-sensitive learning with example-dependent costs. Empirical evidence
confirms its superior performance, when compared to previous methods.
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Table 8: Income of different algorithms on the KDD98 dataset.

Rank Algorithm Income Comments
1 FAR $ 20,693 Ad-hoc method based on sequence of three algorithms
2 DCSM $ 15,329 Probability and cost estimation to minimize cost
3 BB-C4.5 $ 15,016 C4.5 on resampled dataset
4 KDD-Cup 98 Winner $ 14,712 Rule-based approach
5 ED-CS-SVM $14,205 ED-CS-SVM with Gaussian kernel κ = 0.97
6 ED-MetaCost $ 14,113 Probability and cost estimation to minimize cost
7 ED-BP-SVM $14,008 ED-BP-SVM with Gaussian kernel
8 Res-DIPOL $ 14,045 DIPOL on resampled dataset
9 P-ED-BP-SVM $ 13,683 ED-BP-SVM with Polynomial Kernel
10 BB-SVM $ 13,152 CI-SVM on resampled dataset
11 Res-ED-BP-SVM $ 12,883 ED-BP-SVM on resampled dataset
12 BM-CI-SVM $ 10,560 Standard SVM
13 Null Classifier $ 10,560 Predicts all examples as donor

Appendix A. Fenchel Dual Problem

Theorem 3 (Fenchel Dual of the Regularized risk Minimization Problem) Let Ω :
Rn → R and φ : R→ R+ be convex functions and Dom Ω = Dom Φ = Rn, then

inf
β
{Ω(Kβ) +

∑
i

φ(yiK
T
i β)} = sup

z
{−Ω∗(K−1z)−

∑
i

φ∗(yiz
TK−1

i )} (70)

which β and z are primal and dual variables, and Ω∗ and φ∗ are Fenchel Conjugate func-
tions4 of Ω and Φ,respectively.

Proof

(i) By the representer therem we have f(.) = Kβ.

(ii) Fenchel Duality Theorem Rockafellar (1970) and induction we have

inf
f
{Ω(f) +

∑
i

φi(f)} = sup
g
{−Ω∗(g)−

∑
i

φ∗i (g)} (71)

where here f and g are primal and dual decision functions.

(iii) Let Φ : Rn → Rn, then we can write∑
i

φ(yiK
T
i β) = 1TΦ(Y Kβ) (72)

4. The Fenchel conjugate of h : Rn → R is defined as

h∗(y) = sup
x∈Domh

{yTx− h(x)}
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(iv) Composition with linear transformation can be conjugated by 5 Boyd and Vanden-
berghe (2004)

Ω(f) = Ω(Kβ)⇒ Ω∗(g) = Ω∗(K−1z)

Φ(f) = Φ(Y Kβ)⇒ Φ∗(g) = Φ∗(Y K−1z)
(73)

where f and g are primal and dual decision functions and β and z are primal and dual
variables, respectively.

(v) By (73), we have g(.) = K−1z

(vi) From (71) and (72) we have

1TΦ(Y K−1z) =
∑
i

φ∗(yiz
TK−1

i ) (74)

Conjugate of regularizer 6 of Ω(Kβ) = 1
2β

TKβ is given by

Ω∗(K−1z) = sup
β
{zTK−1Kβ − 1

2
βTKβ} =

1

2
zTK−1z

For the decision functions with a bias term, i.e. f(xi) = KT
i β+b, the bias is not regularized,

and unregularized bias formulation introduces an equality constraint in the dual (Rifkin and
Lippert (2007), Section 9.1)

1TK−1z = 0 (75)

Given a, b ∈ R++, the conjugate of the Hinge loss φ(u) = max(b− au, 0), can be computed

g∗(v) = sup
u
{uv −max(b− ax, 0)} =

sup
u
{uv} u > b

a

sup
u
{u(v + a)− b} u ≤ b

a

which we have two cases

(i) v ≤ 0 ⇒ g∗(v) =


sup
u> b

a

{uv} = b
av

sup
u≤1
{u(v + a)− b} =

{
b
av −a ≤ v ≤ 0

∞ v < −a

(ii) v > 0 ⇒ g∗(v) =


sup
u> b

a

{uv} =∞

sup
u≤ b

a

{u(v + a)− b} = b
av

Thus for all u, we can write g∗(v) = I[−1,0](v) + v or equivalently 7 g∗(v) = I[0,1](v) − v.
Now we derive the conjugate of CI-Hinge, BP-Hinge and CS-Hinge losses specifically:

5. Note that, Y is a diagonal matrix with yii ∈ {−1, 1}. So we have Y = Y −1.
6. Φ and Φ∗ are both Tikhonov regularization in H and H∗ with kernels K and K−1 respectively, i.e.,

Ω(f) = 1
2
‖f‖2H = 1

2
fTK−1f and Ω∗(g) = ‖g‖2H∗ = 1

2
zTK−1z

7. This equivalence is legitimate because Ω is an even function.
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CI-Hinge

φ(u) = C max(1− u, 0) = max(C − Cu, 0) ⇒ φ∗(v) = I[0,C](v)− v

BP-Hinge

φBP+(u) = CC1 max(1− u, 0) ⇒ φ∗
BP+(v) = I[0,CC1](v)− v

φBP−(u) = CC−1 max(1− u, 0) ⇒ φ∗
BP−(v) = I[0,CC−1](v)− v

CS-Hinge
φCS+(u) = CC1 max(1− u, 0) ⇒ φ∗

CS+(v) = I[0,CC1](v)− v

φCS−(u) = C max(1− u

κ
, 0) ⇒ φCS

∗
+(v) = I[0,C

κ
](v)− κv

Moreover, since v ≥ 0, for C−1 = 1
κwe can write

φ∗
CS

(v) = φ∗
BP

(v) + (1− κ)|v|

and in general we have∑
i

φ∗
CS

(yiz
TK−1

i ) =
∑
i

φ∗
BP

(yiz
TK−1

i ) + (1− κ)‖K−1z−‖1
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