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Abstract

Regularization is commonly used in classifier design, to assure good generalization. Clas-
sical regularization enforces a cost on classifier complexity, by constraining parameters.
This is usually combined with a margin loss, which favors large-margin decision rules. A
novel and unified view of this architecture is proposed, by showing that margin losses act
as regularizers of posterior class probabilities, in a way that amplifies classical parameter
regularization. The problem of controlling the regularization strength of a margin loss is
considered, using a decomposition of the loss in terms of a link and a binding function.
The link function is shown to be responsible for the regularization strength of the loss,
while the binding function determines its outlier robustness. A large class of losses is then
categorized into equivalence classes of identical regularization strength or outlier robust-
ness. It is shown that losses in the same regularization class can be parameterized so as to
have tunable regularization strength. This parameterization is finally used to derive boost-
ing algorithms with loss regularization (BoostLR). Three classes of tunable regularization
losses are considered in detail. Canonical losses can implement all regularization behav-
iors but have no flexibility in terms of outlier modeling. Shrinkage losses support equally
parameterized link and binding functions, leading to boosting algorithms that implement
the popular shrinkage procedure. This offers a new explanation for shrinkage as a special
case of loss-based regularization. Finally, α-tunable losses enable the independent parame-
terization of link and binding functions, leading to boosting algorithms of great flexibility.
This is illustrated by the derivation of an algorithm that generalizes both AdaBoost and
LogitBoost, behaving as either one when that best suits the data to classify. Various exper-
iments provide evidence of the benefits of probability regularization for both classification
and estimation of posterior class probabilities.
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1. Introduction

The ability to generalize beyond the training set is a central challenge for classifier design. A
binary classifier is usually implemented by thresholding a continuous function, the classifier
predictor, of a high-dimensional feature vector. Predictors are frequently affine functions,
whose level sets (decision boundaries) are hyperplanes in feature space. Optimal predictors
minimize the empirical expectation of a loss function, or risk, on a training set. Modern
risks guarantee good generalization by enforcing large margins and parameter regularization.
Large margins follow from the use of margin losses, such as the hinge loss of the support
vector machine (SVM), the exponential loss of AdaBoost, or the logistic loss of logistic
regression and LogitBoost. These are all upper-bounds on the zero-one classification loss
of classical Bayes decision theory. Unlike the latter, margin losses assign a penalty to
examples correctly classified but close to the boundary. This guarantees a classification
margin and improved generalization (Vapnik, 1998). Regularization is implemented by
penalizing predictors with many degrees of freedom. This is usually done by augmenting
the risk with a penalty on the norm of the parameter vector. Under a Bayesian interpretation
of risk minimization, different norms correspond to different priors on predictor parameters,
which enforce different requirements on the sparseness of the optimal solution.

While for some popular classifiers, e.g. the SVM, regularization is a natural side-product
of risk minimization under a margin loss (Moguerza and Munoz, 2006; Chapelle, 2007;
Huang et al., 2014), the relation between the two is not always as clear for other learning
methods, e.g. boosting. Regularization can be added to boosting (Buhlmann and Hothorn,
2007; Lugosi and Vayatis, 2004; Blanchard et al., 2003) in a number of ways, including re-
stricting the number of boosting iterations (Raskutti et al., 2014; Natekin and Knoll, 2013;
Zhang and Yu, 2005; Rosset et al., 2004; Jiang, 2004; Buhlmann and Yu, 2003), adding a
regularization term (Saha et al., 2013; Culp et al., 2011; Xiang et al., 2009; Bickel et al.,
2006; Xi et al., 2009), restricting the weight update rule (Lozano et al., 2014, 2006; Lugosi
and Vayatis, 2004; Jin et al., 2003) or using divergence measures (Liu and Vemuri, 2011)
and has been implemented for both the supervised and semi-supervised settings (Chen and
Wang, 2008, 2011). However, many boosting algorithms lack explicit parameter regular-
ization. Although boosting could eventually overfit (Friedman et al., 2000; Rosset et al.,
2004), and there is an implicit regularization when the number of boosting iterations is
limited (Raskutti et al., 2014; Natekin and Knoll, 2013; Zhang and Yu, 2005; Rosset et al.,
2004; Jiang, 2004; Buhlmann and Yu, 2003), there are several examples of successful boost-
ing on very high dimensional spaces, using complicated ensembles of thousands of weak
learners, and no explicit regularization (Viola and Jones, 2004; Schapire and Singer, 2000;
Viola et al., 2003; Wu and Nevatia, 2007; Avidan, 2007). This suggests that regularization is
somehow implicit in large margins, and additional parameter regularization may not always
be critical, or even necessary. In fact, in domains like computer vision, large margin classi-
fiers are more popular than classifiers that enforce regularization but not large margins, e.g.
generative models with regularizing priors. This suggests that the regularization implicit in
large margins is complementary to parameter regularization. However, this connection has
not been thoroughly studied in the literature.

In this work, we approach the problem by studying the properties of margin losses.
This builds on prior work highlighting the importance of three components of risk mini-
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mization: the loss φ, the minimum risk C∗φ, and a link function f∗φ that maps posterior
class probabilities to classifier predictions (Friedman et al., 2000; Zhang, 2004; Buja et al.,
2006; Masnadi-Shirazi and Vasconcelos, 2008; Reid and Williamson, 2010). We consider
the subset of losses of invertible link, since this enables the recovery of class posteriors from
predictor outputs. Losses with this property are known as proper losses and important
for applications that require estimates of classification confidence, e.g. multiclass decision
rules based on binary classifiers (Zadrozny, 2001; Rifkin and Klautau, 2004; Gonen et al.,
2008; Shiraishi and Fukumizu, 2011). We provide a new interpretation of these losses as
regularizers of finite sample probability estimates and show that this regularization has at
least two important properties for classifier design. First, it combines multiplicatively with
classical parameter regularization, amplifying it in a way that tightens classification error
bounds. Second, probability regularization strength is proportional to loss margin for a
large class of link functions, denoted generalized logit links. This enables the introduction
of tunable regularization losses φσ, parameterized by a probability regularization gain σ.
A procedure to derive boosting algorithms of tunable loss regularization (BoostLR) from
these losses is also provided. BoostLR algorithms generalize the GradientBoost procedure
(Friedman, 2001), differing only in the example weighting mechanism, which is determined
by the loss φσ.

To characterize the behavior of these algorithms, we study the space R of proper losses φ
of generalized logit link. It is shown that any such φ is uniquely defined by two components:
the link f∗φ and a binding function βφ that maps f∗φ into the minimum risk C∗φ. This
decomposition has at least two interesting properties. First, the two components have a
functional interpretation: while f∗φ determines the probability regularization strength of φ,
βφ determines its robustness to outliers. Second, both βφ and f∗φ define equivalence classes
in R. It follows that R can be partitioned into subsets of losses that have either the same
outlier robustness or probability regularization properties. It is shown that the former are
isomorphic to a set of symmetric scale probability density functions and the latter to the set
of monotonically decreasing odd functions. Three loss classes, with three different binding
functions, are then studied in greater detail. The first, the class of canonical losses, consists
of losses of linear binding function. This includes some of the most popular losses in the
literature, e.g. the logistic. While they can implement all possible regularization behaviors,
these losses have no additional degrees of freedom. In this sense, they are the simplest
tunable regularization losses. This simplicity enables a detailed analytical characterization
of their shape and how this shape is affected by the regularization gain. The second,
the class of shrinkage losses, is a superset of the class of canonical losses. Unlike their
canonical counterparts, shrinkage losses support nonlinear binding functions, and thus more
sophisticated handling of outliers. However, they require an identical parameterization of
the link and binding function. It is shown that, under this constraint, BoostLR implements
the popular shrinkage regularization procedure (Hastie et al., 2001). Finally, the class of
α-tunable losses enables independent parameterization of the link and binding functions.
This endows the losses in this class, and the associated BoostLR algorithms, with a great
deal of flexibility. We illustrate this by introducing an α-tunable loss that generalizes both
the exponential loss of AdaBoost and the logistic loss of LogitBoost, allowing BoostLR to
behave as either of the two algorithms, so as to best suit the data to classify.
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The paper is organized as follows. Section 2 briefly reviews classifier design by risk mini-
mization. The view of margin losses as regularizers of probability estimates is introduced in
Section 3. Section 4 characterizes the regularization strength of proper losses of generalized
logit link. Tunable regularization losses and binding functions are introduced in Section 5,
which also introduces the BoostLR algorithm. The structure of R is then characterized
in Section 6, which introduces canonical, shrinkage, and α-tunable losses. An extensive
set of experiments on various aspects of probability regularization is reported in Section 7.
Finally, some conclusions are drawn in Section 8.

2. Loss Functions and Risk Minimization

We start by reviewing the principles of classifier design by risk minimization (Friedman
et al., 2000; Zhang, 2004; Buja et al., 2006; Masnadi-Shirazi and Vasconcelos, 2008) .

2.1 The Classification Problem

A classifier h maps a feature vector x ∈ X to a class label y ∈ {−1, 1}, according to

h(x) = sign[p(x)], (1)

where p : X → R is the classifier predictor. Feature vectors and class labels are drawn
from probability distributions PX(x) and PY |X(y|x) respectively. Given a non-negative loss
function L(x, y), the optimal predictor p∗(x) minimizes the risk

R(p) = EX,Y [L(p(x), y)]. (2)

This is equivalent to minimizing the conditional risk

EY |X[L(p(x), y)|X = x]

for all x ∈ X . It is frequently useful to express p(x) as a composition of two functions,

p(x) = f(η(x)),

where η(x) = PY |X(1|x) is the posterior probability function, and f : [0, 1] → R a link
function. The problem of learning the optimal predictor can thus be decomposed into the
problems of learning the optimal link f∗(η) and estimating the posterior function η(x). Since
f∗(η) can usually be determined analytically, this reduces to estimating η(x), whenever
f∗(η) is a one-to-one mapping.

In classical statistics, learning is usually based on the zero-one loss

L0/1(y, p) =
1− sign(yp)

2
=

{
0, if y = sign(p);
1, if y 6= sign(p),

where we omit the dependence on x for notational simplicity. The associated conditional
risk

C0/1(η, p) = η
1− sign(p)

2
+ (1− η)

1 + sign(p)

2
=

{
1− η, if p = f(η) ≥ 0;
η, if p = f(η) < 0,
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is the probability of error of the classifier of (1), and is minimized by any f∗ such that
f∗(η) > 0 if η > 1

2
f∗(η) = 0 if η = 1

2
f∗(η) < 0 if η < 1

2 .
(3)

The optimal classifier h∗(x) = sign[p∗(x)], where p∗ = f∗(η), is the well known Bayes
decision rule, and has minimum conditional (zero-one) risk

C∗0/1(η) = η

(
1

2
− 1

2
sign(2η − 1)

)
+ (1− η)

(
1

2
+

1

2
sign(2η − 1)

)
= min{η, 1− η}.

2.2 Learning from Finite Samples

Practical learning algorithms produce an estimate p̂∗(x) of the optimal predictor by min-
imizing an empirical estimate of (2), the empirical risk, from a training sample D =
{(x1, y1), . . . , (xn, yn)}

Remp(p) =
1

n

∑
i

L(p(xi), yi). (4)

This can be formulated as fitting a model η̂(x) = [f∗]−1(p(x; w)) to the sample D, where f∗

is an invertible link that satisfies (3) and p(x; w) a parametric predictor. Two commonly
used links are

f∗ = 2η − 1 and f∗ = log
η

1− η
.

In this way, the learning problem is reduced to the estimation of the model parameters w of
minimum empirical risk. Most modern learning techniques rely on a linear predictor, imple-
mented on either X - p(x,w) = wTx - or some transformed space - p(x,w) = wTΦ(x). For
example, logistic regression (Hosmer and Lemeshow, 2000) uses the logit link f∗ = log η

1−η ,

or equivalently the logistic inverse link [f∗]−1(v) = ev

1+ev , and learns a linear predictor

p(x,w) = wTx. When a transformation Φ(x) is used, it is either implemented indi-
rectly with recourse to a kernel function, e.g. kernelized logistic regression (Zhu and
Hastie, 2001), or learned. For example, boosting algorithms rely on a transformation
Φ(x) = (h1(x), . . . , hm(x)) where hi(x) is a weak or base classifier selected during training.
In this case, the predictor has the form

p(x; w) =
∑
i

wihi(x). (5)

In all cases, given the optimal predictor estimate p̂∗(x) = p(x,w∗), estimates of the
posterior probability η(x) can be obtained with η̂(x) = [f∗]−1(p̂∗(x)). However, when
learning is based on the empirical risk of (4), convergence to the true probabilities is only
guaranteed asymptotically and for certain loss functions L(., .). Even when this is the case,
learning algorithms can easily overfit to the training set, for finite samples. The minimum
of (4) is achieved for some empirical predictor

p̂∗(x) = p∗(x) + εp(x), (6)
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Figure 1: Left: A margin loss function (the logistic loss) of margin parameter µφ, defined
in (25). Right: corresponding inverse link (in blue) and its growth rate (in red).

where p∗(x) is the optimal predictor and εp(x) a prediction error, sampled from a zero mean
distribution of decreasing variance with sample size. For a given sample size, a predictor
with error of smaller variance is said to generalize better. One popular mechanism to prevent
overfitting is to regularize the parameter vector w, by imposing a penalty on its norm, i.e.
minimizing

Remp(p) =
1

n

∑
i

L(p(xi), yi) + λ||w||l

instead of (4). We refer to this as parameter regularization.

2.3 Margin Losses

Another possibility is to change the loss function, e.g. by replacing the 0-1 loss with a
margin loss Lφ(y, p(x)) = φ(yp(x)). As illustrated in Figure 1 (left), these losses assign a
non-zero penalty to small positive values of the margin yp, i.e. in the range 0 < yp < µφ,
where µφ is a parameter, denoted the loss margin. Commonly used margin losses include
the exponential loss of AdaBoost, the logistic loss (shown in the figure) of logistic regression,
and the hinge loss of SVMs. The resulting large-margin classifiers have better finite sample
performance (generalization) than those produced by the 0-1 loss (Vapnik, 1998). The
associated conditional risk

Cφ(η, p) = Cφ(η, f(η)) = ηφ(f(η)) + (1− η)φ(−f(η)) (7)

is minimized by the link

f∗φ(η) = arg min
f
Cφ(η, f) (8)

leading to the minimum conditional risk function

C∗φ(η) = Cφ(η, f∗φ). (9)
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Algorithm φ(v) f∗φ(η) [f∗φ]−1(v) C∗φ(η)

SVM max(1− v, 0) sign(2η − 1) NA 1− |2η − 1|
Boosting exp(−v) 1

2 log η
1−η

e2v

1+e2v
2
√
η(1− η)

Logistic Regression log(1 + e−v) log η
1−η

ev

1+ev -η log η − (1− η) log(1− η)

Table 1: Loss φ, optimal link f∗φ(η), optimal inverse link [f∗φ]−1(v) , and minimum condi-
tional risk C∗φ(η) of popular learning algorithms.

Unlike the 0-1 loss, the optimal link is usually unique for margin losses and computable in
closed-form, by solving ηφ′(f∗φ(η)) = (1−η)φ′(−f∗φ(η)) for f∗φ. Table 1 lists the loss, optimal
link, and minimum risk of popular margin losses.

The adoption of a margin loss can be equivalent to the addition of parameter reg-
ularization. For example, a critical step of the SVM derivation is a normalization that
makes the margin identical to 1/||w||, where w is the normal of the SVM hyperplane
p(x; w) = wTx (Moguerza and Munoz, 2006; Chapelle, 2007). This renders margin maxi-
mization identical to the minimization of hyperplane norm, leading to the interpretation of
the SVM as minimizing the hinge loss under a regularization constraint on w (Moguerza
and Munoz, 2006; Chapelle, 2007), i.e.

RSVM (w) =
1

n

∑
i

max[0, 1− yp(xi; w)] + λ||w||2. (10)

In this case, larger margins translate directly into the regularization of classifier parameters.
This does not, however, hold for all large margin learning algorithms. For example, boosting
does not use explicit parameter regularization, although regularization is implicit in early
stopping (Raskutti et al., 2014; Natekin and Knoll, 2013; Zhang and Yu, 2005; Rosset et al.,
2004; Jiang, 2004; Buhlmann and Yu, 2003). This consists of terminating the algorithm
after a small number of iterations. While many bounds have been derived to characterize
the generalization performance of large margin classifiers, it is not always clear how much of
the generalization ability is due to the loss vs. parameter regularization. In what follows, we
show that margin losses can themselves be interpreted as regularizers. However, instead of
regularizing predictor parameters, they directly regularize posterior probability estimates,
by acting on the predictor output. This suggests a complementary role for loss-based and
parameter regularization. We will see that the two types of regularization in fact have a
multiplicative effect.

3. Proper Losses and Probability Regularization

We start by discussing the role of margin losses as probability regularizers.
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3.1 Regularization Losses

For any margin loss whose link of (8) is invertible, posterior probabilities can be recovered
from

η(x) = [f∗φ]−1(p∗(x)). (11)

Whenever this is the case, the loss is said to be proper1 and the predictor calibrated (De-
Groot and Fienberg, 1983; Platt, 2000; Niculescu-Mizil and Caruana, 2005; Gneiting and
Raftery, 2007). For finite samples, estimates of the probabilities η(x) are obtained from the
empirical predictor p̂∗ with

η̂(x) = [f∗φ]−1(p̂∗(x)). (12)

Parameter regularization improves estimates p̂∗(x) by constraining predictor parameters.
For example, a linear predictor estimate p̂∗(x; ŵ) = ŵTx can be written in the form of (6),
with p∗(x) = w∗Tx and εp(x) = wε

Tx, where wε is a parameter estimation error. The
regularization of (10) reduces wε and the prediction error εp(x), improving probability
estimates in (12).

Loss-based regularization complements parameter regularization, by regularizing the
probability estimates directly. To see this note that, whenever the loss is proper and the
noise component εp of (6) has small amplitude, (12) can be approximated by its Taylor
series expansion around p∗

η̂(x) ≈ [f∗φ]−1(p∗(x)) + {[f∗φ]−1}′(p∗(x))εp(x)

= η(x) + εη(x)

with

εη(x) = {[f∗φ]−1}′(p∗(x))εp(x). (13)

If |{[f∗φ]−1}′(p∗(x))| < 1 the probability estimation noise εη has smaller magnitude than the

prediction noise εp. Hence, for equivalent prediction error εp, a loss φ with inverse link [f∗φ]−1

of smaller growth rate |{[f∗φ]−1}′(v)| produces more accurate probability estimates. Figure 1
(right) shows the growth rate of the inverse link of the logistic loss. When the growth rate is
smaller than one, the loss acts as a regularizer of probability estimates. From (13), this reg-
ularization multiplies any decrease of prediction error obtained by parameter regularization.
This motivates the following definition.

Definition 1 Let φ(v) be a proper margin loss. Then

ρφ(v) =
1

|{[f∗φ]−1}′(v)|
(14)

is the regularization strength of φ(v). If ρφ(v) ≥ 1, ∀v, then φ(v) is denoted a regularization
loss.

1. When the optimal link is unique, the loss is denoted strictly proper. Because this is the case for all losses
considered in this work, we simply refer to the loss as proper.

2758



A View of Margin Losses as Regularizers of Probability Estimates

3.2 Generalization

An alternative way to characterize the interaction of loss-based and parameter-based regu-
larization is to investigate how the two impact classifier generalization. This can be done
by characterizing the dependence of classification error bounds on the two forms of regular-
ization. Since, in this work, we will emphasize boosting algorithms, we rely on the following
well known boosting bound.

Theorem 1 (Schapire et al., 1998) Consider a sample S of m examples {(x1, yi), . . . , (xm, ym)}
and a predictor p̂∗(x; w) of the form of (5) where the hi(x) are in a space H of base classi-
fiers of VC-dimension d. Then, with probability at least 1 − δ over the choice of S, for all
θ > 0,

PX,Y [yp(x; w) ≤ 0] ≤ PS
[
yp̂∗(x; w)

||w||1
≤ θ
]

+O

 1√
m

√
d log2(m/d)

θ2
+ log(1/δ)

 ,

where PS denotes an empirical probability over the sample S.

Given H,m, d and δ, the two terms of the bound are functions of θ. The first term depends
on the distribution of the margins yip̂

∗(xi; w) over the sample. Assume, for simplicity, that
S is separable by p̂∗(x; w), i.e. yip̂

∗(xi; w) > 0, ∀i, and denote the empirical margin by

γs = yi∗ p̂
∗(xi∗ ; w), i∗ = arg min

i
yip̂
∗(xi; w). (15)

Then, for any ε > 0 and θ = γs/||w||1 − ε, the empirical probability is zero and

PX,Y [yp(x; w) ≤ 0] ≤ O

(
1√
m

√
d log2(m/d)

( γs
||w||1 − ε)

2
+ log(1/δ)

)
.

Using (11) and a first order Taylor series expansion of [f∗φ]−1(.) around the origin

η̂(xi∗) = [f∗φ]−1(yi∗γs)

≈ [f∗φ]−1(0) + yi∗γs{[f∗φ]−1}′(0)

it follows that
γs ≈ ρφ(0)|η̂(xi∗)− 1/2|, (16)

and the bound can be approximated by

PX,Y [yp(x; w) ≤ 0] ≤ O

 1√
m

√√√√√ d log2(m/d)(
ρφ(0)
||w||1 |η̂(xi∗)− 1/2| − ε

)2 + log(1/δ)

 . (17)

Since this is a monotonically decreasing function of the generalization factor

κ =
ρφ(0)

||w||1
, (18)

2759



Masnadi-Shirazi and Vasconcelos

larger κ lead to tighter bounds on the probability of classification error, i.e. classifiers with
stronger generalization guarantees. This confirms the complimentary nature of parameter
and probability regularization, discussed in the previous section. Parameter regularization,
as in (10), encourages solutions of smaller ||w||1 and thus larger κ. Regularization losses
multiply this effect by the regularization strength ρφ(0). This is in agreement with the
multiplicative form of (13). In summary, for regularization losses, the generalization guar-
antees of classical parameter regularization are amplified by the strength of the probability
regularization at the classification boundary.

4. Controlling the Regularization Strength of Proper Losses

In the remainder of this work, we study the design of regularization losses. In particular,
we study how to control the regularization strength of a proper loss, by manipulating some
loss parameter.

4.1 Proper Losses

The structure of proper losses can be studied by relating conditional risk minimization to
the classical problem of probability elicitation in statistics (Savage, 1971; DeGroot and
Fienberg, 1983). Here, the goal is to find the probability estimator η̂ that maximizes the
expected score

I(η, η̂) = ηI1(η̂) + (1− η)I−1(η̂), (19)

of a scoring rule that assigns to prediction η̂ a score I1(η̂) when event y = 1 holds and a
score I−1(η̂) when y = −1 holds. The scoring rule is proper if its components I1(·), I−1(·)
are such that the expected score is maximal when η̂ = η, i.e.

I(η, η̂) ≤ I(η, η) = J(η), ∀η (20)

with equality if and only if η̂ = η. A set of conditions under which this holds is as follows.

Theorem 2 (Savage, 1971) Let I(η, η̂) be as defined in (19) and J(η) = I(η, η). Then (20)
holds if and only if J(η) is convex and

I1(η) = J(η) + (1− η)J ′(η) I−1(η) = J(η)− ηJ ′(η). (21)

Several works investigated the connections between probability elicitation and risk mini-
mization (Buja et al., 2006; Masnadi-Shirazi and Vasconcelos, 2008; Reid and Williamson,
2010). We will make extensive use of the following result.

Theorem 3 (Masnadi-Shirazi and Vasconcelos, 2008) Let I1(·) and I−1(·) be as in (21),
for any continuously differentiable convex J(η) such that J(η) = J(1 − η), and f(η) any
invertible function such that f−1(−v) = 1− f−1(v). Then

I1(η) = −φ(f(η)) I−1(η) = −φ(−f(η))

if and only if
φ(v) = −J

(
f−1(v)

)
− (1− f−1(v))J ′

(
f−1(v)

)
.
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It has been shown that, for Cφ(η, p), f∗φ(η), and C∗φ(η) as in (7)-(9), C∗φ(η) is concave (Zhang,
2004) and

C∗φ(η) = C∗φ(1− η) (22)

[f∗φ]−1(−v) = 1− [f∗φ]−1(v). (23)

Hence, the conditions of the theorem are satisfied by any continuously differentiable J(η) =
−C∗φ(η) and invertible f(η) = f∗φ(η). It follows that, I(η, η̂) = −Cφ(η, f) is the expected
score of a proper scoring rule if and only if the loss has the form

φ(v) = C∗φ
(
[f∗φ]−1(v)

)
+ (1− [f∗φ]−1(v))[C∗φ]′

(
[f∗φ]−1(v)

)
. (24)

In this case, the predictor of minimum risk is p∗ = f∗φ(η), and posterior probabilities can
be recovered with (11). Hence, the loss φ is proper and the predictor p∗ calibrated. In
summary, proper losses have the structure of (22)-(24). In this work, we also assume that
C∗φ(0) = C∗φ(1) = 0. This guarantees that the minimum risk is zero when there is absolute
certainty about the class label Y , i.e. PY |X(1|x) = 0 or PY |X(1|x) = 1.

4.2 Loss Margin and Regularization Strength

The facts that 1) the empirical margin γs of (15) is a function of the loss margin µφ of
Figure 1, and 2) the regularization strength ρφ is related to γs by (16), suggests that µφ is a
natural loss parameter to control ρφ. A technical difficulty is that a universal definition of
µφ is not obvious, since most margin losses φ(v) only converge to zero as v →∞. Although
approximately zero for large positive v, they are strictly positive for all finite v. This is, for
example, the case of the logistic loss φ(v) = log(1 + e−v) of Figure 1 and the boosting loss
of Table 1. To avoid this problem, we use a definition based on the second-order Taylor
series expansion of φ around the origin. The construct is illustrated in Figure 2, where the
loss margin µφ is defined by the point where the quadratic expansion reaches its minimum.
It can be easily shown that this is the point v = µφ, where

µφ = − φ
′(0)

φ′′(0)
. (25)

In Appendix A, we show that, under mild conditions (see Lemma 9) on the inverse link
[f∗φ]−1(η) of a twice differentiable loss φ

µφ =
ρφ(0)

2
, (26)

and the regularization strength of φ is lower bounded by twice the loss margin

ρφ(v) ≥ 2µφ. (27)

Under these conditions, φ(v) is a regularization loss if and only if µφ ≥ 1
2 . This establishes

a direct connection between margins and probability regularization: larger loss margins
produce more strongly regularized probability estimates. Hence, for proper losses of suitable
link, the large margin strategy for classifier learning is also a strategy for regularization of
probability estimates. In fact, from (26) and (18), the generalization factor of these losses

is directly determined by the loss margin, since κ =
2µφ
||w||1 .
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Figure 2: Definition of the loss margin µφ of a loss φ.

4.3 The Generalized Logit Link

As shown in Lemma 9 of Appendix A, the conditions that must be satisfied by the inverse
link for (26) and (27) to hold (monotonically increasing, maximum derivative at the origin)
are fairly mild. For example, they hold for the scaled logit

γ(η; a) = a log
η

1− η
γ−1(v; a) =

ev/a

1 + ev/a
, (28)

which, as shown in Table 1, is the optimal link of the exponential loss when a = 1/2 and
of the logistic loss when a = 1. Since the exponential loss of boosting has margin µφ = 1
and the logistic loss µφ = 2, it follows from the lemma that these are regularization losses.
However, the conditions of the lemma hold for many other link functions. In this work, we
consider a broad family of such functions, which we denote as the generalized logit.

Definition 2 An invertible transformation π(η) is a generalized logit if its inverse, π−1(v),
has the following properties

1. π−1(v) is monotonically increasing,

2. limv→∞ π
−1(v) = 1

3. π−1(−v) = 1− π−1(v),

4. for finite v, (π−1)(2)(v) = 0 if and only if v = 0,

where π(n) is the nth order derivative of π.

In Appendix B, we discuss some properties of the generalized logit and show that all con-
ditions of Lemma 9 hold when f∗φ(η) is in this family of functions. When combined with
Lemma 9, this proves the following result.

2762



A View of Margin Losses as Regularizers of Probability Estimates

Theorem 4 Let φ(v) be a twice differentiable proper loss of generalized logit link f∗φ(η).
Then

µφ =
ρφ(0)

2
(29)

and the regularization strength of φ(v) is lower bounded by twice the loss margin ρφ(v) ≥ 2µφ.
φ(v) is a regularization loss if and only if µφ ≥ 1

2 .

5. Controlling the Regularization Strength

The results above show that it is possible to control the regularization strength of a proper
loss of generalized logit link by manipulating the loss margin µφ. In this section we derive
procedures to accomplish this.

5.1 Tunable Regularization Losses

We start by studying the set of proper margin losses whose regularization is controlled by
a parameter σ > 0. These are denoted tunable regularization losses.

Definition 3 Let φ(v) be a proper loss of generalized logit link f∗φ(η). A parametric loss

φσ(v) = φ(v;σ) such that φ(v; 1) = φ(v)

is the tunable regularization loss generated by φ(v) if φσ(v) is a proper loss of generalized
logit link and

µφσ = σµφ,

for all σ such that

σ ≥ 1

2µφ
. (30)

The parameter σ is the gain of the tunable regularization loss φσ(v).

Since, from (29) and (14), the loss margin µφ only depends on the derivative of the inverse
link at the origin, a tunable regularization loss can be generated from any proper loss of
generalized logit link, by simple application of Theorem 3.

Lemma 4 Let φ(v) be a proper loss of generalized logit link f∗φ(η). The parametric loss

φσ(v) = C∗φσ{[f
∗
φσ ]−1(v)}+ (1− [f∗φσ ]−1(v))[C∗φσ ]′([f∗φσ ]−1(v)), (31)

where

f∗φσ(η) = σf∗φ(η) (32)

C∗φσ(η) is a minimum risk function (i.e. a continuously differentiable concave function with
symmetry [C∗φσ ](1 − η) = [C∗φσ ](η)) such that C∗φσ(0) = 0, and (30) holds is a tunable
regularization loss.
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Proof From (32)

[f∗φσ ]−1(v) = [f∗φ]−1
( v
σ

)
. (33)

Since [f∗φ]−1(v) is a generalized logit link it has the properties of Definition 2. Since these
properties continue to hold when v is replaced by v/σ, it follows that f∗φσ(v) is a generalized
logit link. It follows from (31) that φσ(v) satisfies the conditions of Theorem 3 and is a

proper loss. Since µφσ =
ρφσ (0)

2 = 1
2{[f∗φσ ]

−1}′(0) = σµφ, the parametric loss φσ(v) is a tunable

regularization loss.

In summary, it is possible to generate a tunable regularization loss by simply rescaling the
link of a proper loss. Interestingly, this holds independently of how σ parameterizes the
minimum risk [C∗φσ ](η). However, not all such losses are useful. If, for example, the process
results in

φσ(v) = φ(v/σ),

it corresponds to a simple rescaling of the horizontal axis of Figure 1. The loss φσ(v) is thus
not fundamentally different from φ(v). Using this loss in a learning algorithm is equivalent
to varying the margin by rescaling the feature space X .

5.2 The Binding Function

To produce non-trivial tunable regularization losses φσ(v), we need a better understanding
of the role of the minimum risk [C∗φσ ](η). This is determined by the binding function of the
loss.

Definition 5 Let φ(v) be a proper loss of link f∗φ(η), and minimum risk C∗φ(η). The func-
tion

βφ(v) = [C∗φ]′
(
[f∗φ]−1(v)

)
(34)

is denoted the binding function of φ.

The properties of the binding function are discussed in Appendix C and illustrated in
Figure 3. For proper losses of generalized logit link, βφ(v) is a monotonically decreasing
odd function, which determines the behavior of φ(v) away from the origin and defines a
one-to-one mapping between the link f∗φ and the derivative of the risk C∗φ. In this way, βφ
“binds” link and risk.

The following result shows that the combination of link and binding function determine
the loss up to a constant.

Theorem 5 Let φ(v) be a proper loss of generalized logit link f∗φ(η) and binding function
βφ(v). Then

φ′(v) = (1− [f∗φ]−1(v))β′φ(v). (35)

Proof From (24) and the definition of βφ,

φ(v) = C∗φ([f∗φ]−1(v)) + (1− [f∗φ]−1(v))βφ(v). (36)

Taking derivatives on both sides leads to (35).
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Figure 3: Link f∗φ(η), risk derivative [C∗φ]′(η), and binding function βφ(f∗φ(η)) of a proper
loss φ(v) of generalized logit link.

This result enables the derivation of a number of properties of proper losses of gener-
alized logit link. These are discussed in Appendix D.1, where such losses are shown to be
monotonically decreasing, convex under certain conditions on the inverse link and binding
function, and identical to the binding function for large negative margins. In summary, a
proper loss of generalized logit link can be decomposed into two fundamental quantities:
the inverse link, which determines its regularization strength, and the binding function,
which determines its behavior away from the origin. Since tunable regularization losses are
proper, the combination of this result with Lemma 4 and Definition 5 proves the following
theorem.

Theorem 6 Let φ(v) be a proper loss of generalized logit link f∗φ(η). The parametric loss

φ′σ(v) = (1− [f∗φσ ]−1(v))β′φσ(v), (37)

where

f∗φσ(η) = σf∗φ(η), (38)

βφσ(v) is a binding function (i.e. a continuously differentiable, monotonically decreasing,
odd function), and σ is such that (30) holds is a tunable regularization loss.
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Algorithm 1: BoostLR

Input: Training set D = {(x1, y1), . . . , (xn, yn)}, where yi ∈ {1,−1} is the class label of example
x, regularization gain σ, and number T of weak learners in the final decision rule.

Initialization: SetG(0)(xi)=0 and w(1)(xi) = −
(

1− [f∗φσ
]−1(yiG

(0)(xi))
)
β′φσ

(
yiG

(0)(xi)
)
∀xi

.
for t = {1, . . . , T} do

choose weak learner

g∗(x) = arg max
g(x)

n∑
i=1

yiw
(t)(xi)g(xi)

update predictor G(x)

G(t)(x) = G(t−1)(x) + g∗(x)

update weights

w(t+1)(xi) = −
(

1− [f∗φσ
]−1(yiG

(t)(xi))
)
β′φσ

(
yiG

(t)(xi)
)
∀xi

end for
Output: decision rule h(x) = sgn[G(T )(x)].

5.3 Boosting With Tunable Probability Regularization

Given a tunable regularization loss φσ, various algorithms can be used to design a classifier.
Boosting accomplishes this by gradient descent in a space W of weak learners. While
there are many variants, in this work we adopt the GradientBoost framework (Friedman,
2001). This searches for the predictor G(x) of minimum empirical risk on a sample D =
{(x1, y1), . . . , (xn, yn)},

R(G) =
n∑
i=1

φσ(yiG(xi)).

At iteration t, the predictor is updated according to

G(t)(x) = G(t−1)(x) + g(t)(x), (39)

where g(t)(x) is the gradient of R(G) in W, i.e. the weak learner

g(t)(x) = arg max
g

n∑
i=1

−yiφ′σ(yiG
(t−1)(xi))g(xi)

= arg max
g

n∑
i=1

yiw
(t)
σ (xi)g(xi),

where
w(t)
σ (xi) = −φ′σ(yiG

(t−1)(xi))
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is the weight of example xi at iteration t. For a tunable regularization loss φσ(v) of gener-
alized logit link f∗φσ(η) and binding function βφσ(v), it follows from (37) that

w(t)
σ (xi) = −

(
1− [f∗φσ ]−1

(
yiG

(t−1)(xi)
))

β′φσ

(
yiG

(t−1)(xi)
)
. (40)

Boosting with these weights is denoted boosting with loss regularization (BoostLR) and
summarized in Algorithm 1.

The weighting mechanism of BoostLR provides some insight on how the choices of link
and binding function affect classifier behavior. Using γi = yiG

(t−1)(xi) to denote the margin
of xi for the classifier of iteration t− 1,

w(t)
σ (xi) = −φ′σ(γi) = −

(
1− [f∗φσ ]−1 (γi))

)
β′φσ(γi). (41)

It follows from the discussion of the previous section that 1) the link f∗φσ is responsible for
the behavior of the weights around the classification boundary and 2) the binding function
βφσ for the behavior at large margins. For example, applying (34) to the links and risks of
Table 1 results in

β(v) = e−v − ev β′(v) = −e−v − ev (42)

for AdaBoost and
β(v) = −v β′(v) = −1 (43)

for LogitBoost. In result, AdaBoost weights are exponentially large for examples of large
negative margin γi, while LogitBoost weights remain constant. This fact has been used to
explain the much larger sensitivity of AdaBoost to outliers (Maclin and Opitz, 1997; Diet-
terich, 2000; Mason et al., 2000; Masnadi-Shirazi and Vasconcelos, 2008; Friedman et al.,
2000; McDonald et al., 2003; Leistner et al., 2009). Under this view, the robustness of a
boosting algorithm to outliers is determined by its binding function. Hence, the decomposi-
tion of a loss into link and binding functions translates into a functional decomposition for
boosting algorithms. It decouples the generalization ability of the learned classifier, deter-
mined by the regularization strength imposed by the link, from its robustness to outliers,
determined by the binding function.

6. The Set of Tunable Regularization Losses

The link-binding decomposition can also be used to characterize the structure of the set of
tunable regularization losses.

6.1 Equivalence Classes

A simple consequence of (37) is that the set R of tunable regularization losses φσ is the
Cartesian product of the set L of generalized logit links and the set B of binding functions.
It follows that both generalized logit links fσ and binding functions βσ define equivalence
classes in R. In fact, R can be partitioned according to

R = ∪βσRβσ where Rβσ = {φσ|βφσ = βσ}

or
R = ∪fσRfσ where Rfσ = {φσ|f∗φσ = fσ}.
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Figure 4: The set R of tunable regularization losses can be partitioned into equivalence
classes Rfφσ , isometric to the set B of binding functions, or equivalence classes
Rβφσ , isometric to the set L of generalized logit links. A tunable regularization
loss φσ is defined by a pair of link fφσ and binding βφσ functions.

The sets Rfσ are isomorphic to B, which is itself isomorphic to the set of continuously
differentiable, monotonically decreasing, odd functions. The sets Rβσ are isomorphic to L,
which is shown to be isomorphic, in Appendix B.2, to the set of parametric continuous scale
probability density functions (pdfs)

ψσ(v) =
1

σ
ψ
( v
σ

)
, (44)

where ψ(v) has unit scale, a unique maximum at the origin, and ψ(−v) = ψ(v). The
structure of the set of tunable regularization losses is illustrated in Figure 4. The set can
be partitioned in two ways. The first is into a set of equivalence classes Rβσ isomorphic to
the set of pdfs of (44). The second into a set of equivalence classes Rfσ isomorphic to the
set of monotonically decreasing odd functions.

6.2 Design of Regularization Losses

An immediate consequence of the structure of R is that all tunable regularization losses
can be designed by the following procedure.

1. select a scale pdf ψσ(v) with the properties of (44).

2. set [f∗φσ ]−1(v) = cσ(v), where cσ(v) =
∫ v
−∞ ψσ(q)dq is the cumulative distribution

function (cdf) of ψσ(v).
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Figure 5: Canonical regularization losses. Left: general properties of the loss and inverse
link functions. Right: Relations between losses and scale pdfs.

3. select a binding function βφσ(v). This can be any parametric family of continuously
differentiable, monotonically decreasing, odd functions.

4. define the tunable regularization loss as φ′σ(v) = (1− [f∗φσ ]−1(v))β′φσ(v).

5. restrict σ according to (30).

Note that the derivative φ′σ(v) is sufficient to implement the BoostLR algorithm. If desired,
it can be integrated to produce a formula for the loss φσ(v). This defines the loss up to
a constant, which can be determined by imposing the constraint that limv→∞ φσ(v) = 0.
As discussed in the previous section, this procedure enables the independent control of the
regularization strength and robustness of the losses φσ(v). In fact, it follows from step 2.
and (14) that

ρφσ(v) =
1

ψσ(v)
, (45)

i.e. the choice of pdf ψσ(v) determines the regularization strength of φσ(v). The choice of
binding function in step 3. then limits φσ(v) to an equivalence class Rβσ of regularization
losses with common robustness properties. We next consider some important equivalence
classes.

6.3 Canonical Regularization Losses

We start by considering the set of tunable regularization losses with linear binding function

βφσ(v) = −v. (46)
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Generalized Logistic (GLog) Generalized Gaussian (GGauss)

ψσ(v) e
v
σ

σ(1+e
v
σ )2

1
4σe
−(
√
π

4σ
v)2

cσ(v) ev/σ

1+ev/σ
1
2

[
1 + erf

(√
π

4σ v
)]

φσ(v) σ log
(

1 + e−
v
σ

)
v
2

[
erf

(√
π

4σ v
)
− 1
]

+ 2σ
π e
−
(√

π
4σ
v
)2

f∗φσ(η) σ log η
1−η

4σ√
π
· erf−1(2η − 1)

C∗φσ(η) −ση log(η)− σ(1− η) log(1− η) − 4σ√
π

∫
erf−1(2η − 1)dη

ρφ(v) σ(1+e
v
σ )2

e
v
σ

4σe(
√
π

4σ
v)2

Generalized Laplacian (GLaplacian) Generalized Boosting (GBoost)

ψσ(v) 1
4σe
− |v|

2σ
2

σ(4+( v
σ
)2)

3
2

cσ(v) 1
2

[
1 + sign(v)

(
1− e−

|v|
2σ

)]
1
2 +

v
σ

2
√

4+( vσ )
2

φσ(v) σe
−|v|
2σ + 1

2(|v| − v) σ
2

(√
4 +

(
v
σ

)2 − v
σ

)
f∗φσ(η) −2σsign(2η − 1) log(1− |2η − 1|) σ 2η−1√

η(1−η)
C∗φσ(η) σ(1− |2η − 1|)[1− log(1− |2η − 1|)] 2σ

√
η(1− η)

ρφ(v) 4σe
|v|
2σ

σ
2

(
4 + ( vσ )2

) 3
2

Table 2: Canonical tunable regularization losses

From (37), these losses are uniquely determined by their link function

φ′σ(v) = −(1− [f∗φσ ]−1(v)). (47)

Their properties are discussed in Appendix D.2. As illustrated in Figure 5, they are convex,
monotonically decreasing, linear (with slope −1) for large negative v, constant for large
positive v, and have slope −.5 and maximum curvature at the origin. The only degrees of
freedom are in the vicinity of the origin, and determine the loss margin, since µφσ = 1

2φ′′σ(0)
.

Furthermore, because these losses have regularization strength ρφσ(0) = 1
φ′′σ(0)

, they are

direct regularizers of probability scores, and regularization losses whenever φ′′σ(0) ≤ 1. This
is reminiscent of a well known result (Bartlett et al., 2006) that Bayes consistency holds for
a convex φ(v) if and only if φ′(0) ≤ 0. From Property 4. of Lemma 13, this holds for all
regularization losses with the form of (47). The constraint φ′′σ(0) ≤ 1 is also equivalent to
φ′′(0)
σ ≤ 1. This is the condition of (30) for the losses of (47).

When (46) holds, it follows from (34) that f∗φ(η) = −[C∗φ]′(η). Buja et al. showed that
the empirical risk of (4) is convex when φ is a proper loss and this relationship holds . They
denoted as canonical risks the risks of (7) for which this is the case (Buja et al., 2006).
For consistency, we denote the associated φ(v) a canonical loss. This is summarized by the
following definition.

Definition 6 A tunable regularization loss φσ(v) such that (47) holds for any σ such that
φ′′σ(0) ≤ 1 is a canonical loss.
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We note, however, that what makes canonical losses special is not the guarantee of a convex
risk, but that they have the simplest binding function with this guarantee. From Property
2. of Lemma 13, loss convexity does not require a linear binding function. On the other
hand, since 1) any risk of convex loss is convex, 2) (57) holds for the linear binding function,
and 3) binding functions are monotonically decreasing, the linear binding function is the
simplest that guarantees a convex risk.

It should also be noted that the equivalence class of (46) includes many regularization
losses. The relations of Figure 5, where cσ(v) is the cumulative distribution function (cdf)
of the pdf ψσ(v) of (44), can be used to derive losses from pdfs or pdfs from losses. Some
example tunable canonical regularization losses are presented in Table 2. The generalized
logistic (GLog), Gaussian (GGauss), and Laplacian (GLaplacian) losses are tunable losses
derived from the logistic, Gaussian, and Laplace pdfs respectively. The GBoost loss illus-
trates some interesting alternative possibilities for this loss design procedure. In this case,
we did not start from the pdf ψσ(v) but from the minimum risk of boosting (see Table 1).
We then used the top equations of Figure 5 to derive the cdf cσ(v) and the bottom equa-
tions to obtain φσ(v) and f∗φσ(η). The resulting pdf ψσ(v) is a special case of the Pearson

type VII distribution with zero location parameter, shape parameter 3
2 and scale parameter

2σ. These losses, their optimal inverse links, and regularization strength are plotted in Fig-
ure 6, which also shows how the regularization gain σ influences the loss around the origin,
both in terms of its margin properties and regularization strength. Note that, due to (45),
canonical losses implement all regularization behaviors possible for tunable regularization
losses. This again justifies the denomination of “canonical regularization losses,” although
such an interpretation does not appear to have been intended by Buja et al.

The combination of BoostLR with a canonical loss is denoted a canonical BoostLR
algorithm. For a proper loss φσ, G(t)(x) converges asymptotically to the optimal predictor
p∗σ(x) = f∗φσ(η(x)) and the weight function of (40) to

w∗(xi) =

{
1− η(xi) if yi = 1
η(xi) if yi = −1.

Hence, the weights of canonical BoostLR converge to the posterior example probabilities.
Figure 7 shows the weight functions of the losses of Table 2. An increase in regularization
gain σ simultaneously 1) extends the region of non-zero weight away from the boundary,
and 2) reduces the derivative amplitude, increasing regularization strength. Hence, larger
gains increase both the classification margin and the regularization of probability estimates.

6.4 Shrinkage Losses

Definition 7 A tunable regularization loss φσ(v) such that

β′φσ(v) = β′φ

( v
σ

)
, (48)

for some βφ(v) ∈ B is a shrinkage loss.

Note that, since (48) holds for the linear binding function of (46), canonical regularization
losses are shrinkage losses. These losses are easily identifiable, since combining (48), (37),
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Figure 7: BoostLR weights for various parametric regularization losses and gains. GLog
(top left), GBoost (top right), GGauss (bottom left) and GLaplace (bottom
right).

and (33) leads to φ′σ(v) = φ′(v/σ). Hence, φσ is a shrinkage loss if and only if

φσ(v) = σφ
( v
σ

)
. (49)

This enables the generalization of any proper loss of generalized logit link into a shrinkage
loss. For example, using Table 1, it is possible to derive the shrinkage losses generated by
the logistic

φσ(v) = σ log(1 + e−
v
σ )

and the exponential loss

φσ(v) = σe−
v
σ .

The former is the GLog loss of Table 2, but the later is not a canonical regularization loss.

Shrinkage losses also connect BoostLR to shrinkage, a popular regularization heuris-
tic (Hastie et al., 2001). For GradientBoost, this consists of modifying the learning rule
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of (39) into

G(t)(x) = G(t−1)(x) + λg(t)(x), (50)

where 0 < λ < 1 is a learning rate. Shrinkage is inspired by parameter regularization meth-
ods from the least-squares regression literature, where similar modifications follow from the
adoption of Bayesian models with priors that encourage sparse regression coefficients. This
interpretation does not extend to classification, barring the assumption of the least-squares
loss and some approximations (Hastie et al., 2001). In any case, it has been repeatedly
shown that small learning rates (λ ≤ 0.1) can significantly improve the generalization abil-
ity of the learned classifiers. Hence, despite its tenuous theoretical justification, shrinkage
is a commonly used regularization procedure.

Shrinkage losses, and the proposed view of margin losses as regularizers of probabil-
ity estimates, provide a much simpler and more principled justification for the shrinkage
procedure. It suffices to note that the combination of (49) and (41) leads to

w(t)
σ (xi) = −φ′σ(γi) = −φ′

(γi
σ

)
= −

(
1− [f∗φ]−1

(γi
σ

))
β′φ

(γi
σ

)
,

where γi = yiG
(t−1)(xi). Letting λ = 1/σ, this is equivalent to

wλ(xi) = −
(
1− [f∗φ]−1 (yiλG(xi))

)
β′φ (yiλG(xi)) .

Hence, the weight function of BoostLR with shrinkage loss φσ and predictor G(x) is equiv-
alent to the weight function of standard GradientBoost with loss φ and shrinked predictor
1/σG(x). Since the only other effect of replacing (39) with (50) is to rescale the final predic-
tor G(T )(x), the decision rule h(x) produced by the two algorithms is identical. In summary,
GradientBoost with shrinkage and a small learning rate λ is equivalent to BoostLR with
a shrinkage loss of large regularization strength (1/λ). This justifies the denomination of
“shrinkage losses” for the class of regularization losses with the property of (48).

It should be noted, however, that while rescaling the predictor does not affect the
decision rule, it affects the recovery of posterior probabilities from the shrinked predictor.
The regularization view of shrinkage makes it clear that the probabilities can be recovered
with

η̂(x) = [f∗φσ ]−1
(
G(T )(x)

)
= [f∗φ]−1

(
λG(T )(x)

)
. (51)

In the absence of this view, it is not obvious why shrinkage, which is justified as a simple
change of learning rate, would require a modified link function for probability recovery.
It is also neither clear nor it has been claimed that shrinkage would improve the quality
of probability estimates. On the other hand, the discussion above suggests that this is
why it works: shrinkage is a procedure for controlling probability regularization strength
by manipulation of the loss margin. In fact, since GradientBoost with shrinkage and a
small learning rate λ is equivalent to BoostLR with a shrinkage loss of large regularization
strength (1/λ), Section 3.2 provides a theoretical justification for the empirical evidence
that shrinkage improves generalization performance.
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Figure 8: Weight function of the α-tunable regularization loss, for different values of α.

6.5 α-tunable Regularization Losses

From (48), the key to the equivalence between loss-based regularization and shrinkage is
the identical parameterization of [f∗φσ ]−1(v) and β′φσ(v) in (33) and (48). When this is not
the case, BoostLR weights are given by

wσ(xi) = −
(
1− [f∗φσ ]−1 (γi)

)
β′φσ(γi)

= −
(
1− [f∗φ]−1 (λγi)

)
β′φσ(γi)

6= −
(
1− [f∗φ]−1 (λγi)

)
β′φ(λγi)),

and the shrinkage interpretation no longer holds. One such loss class is defined as follows.

Definition 8 A tunable regularization loss φσ(v) such that

β′φσ(v) = g(α)β′φ

(
α
v

σ

)
,

where βφ(v) ∈ B, g(α) is a constant that depends on α, and α ≥ 0 is denoted α-tunable.

The additional α parameter enables α-tunable losses to independently control the link
and binding functions. In fact, they generalize the previous two loss classes, reducing to
shrinkage losses when α = 1 and g(1) = 1 and canonical losses when α = 0 and g(0)β′φ(0) =
1. More generally, the α parameter allows the “interpolation” between pairs of canonical
or shrinkage losses of equal generalized logit link. For example, the logistic and exponential
losses have the scaled logit of (28) as link function, with a = 1 and a = 1

2 , respectively.
Since these can be written as a = 1

ξ+1 , for ξ = 0 and ξ = 1, scaled logits with ξ ∈ [0, 1]
interpolate between the links of the two losses. Similarly, the binding functions of the two
losses, given by (42) and (43), are special cases of

β′φ(v) = − 1

2− b
(e−bv + ebv) (52)
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with b = 0 and b = 1. Hence, binding functions with b = ξ and ξ ∈ [0, 1] interpolate between
the binding functions of the two losses. It follows that

φ′(v) = −

(
1− e(ξ+1)v

1 + e(ξ+1)v

)
1

2− ξ
(e−ξv + eξv), ξ ∈ [0, 1]

interpolates between the derivative of the logistic (ξ = 0) and exponential (ξ = 1) losses.
The derivative of the tunable regularization loss that it generates is

φ′µ(v) = −

(
1− e

(ξ+1) v
µ

1 + e
(ξ+1) v

µ

)
1

2− ξ
(e
−ξ v

µ + e
ξ v
µ ), ξ ∈ [0, 1].

Defining σ = µ
ξ+1 and α = ξ

1+ξ , this can be written as

φ′σ(v) = −

(
1− e

v
σ

1 + e
v
σ

)
1− α
2− 3α

(e−α
v
σ + eα

v
σ ), α ∈

[
0,

1

2

]
, (53)

i.e. a α-tunable loss of scaled logit link, g(α) = 1−α
2−3α , and the binding function of (52).

Figure 8 shows the weight function, wσ(γ) = −φ′σ(γ), of this loss as a function of the normal-
ized margin γ = v/σ, for different values of α. As α varies, the weight function interpolates
between the asymptotically constant weights of LogitBoost (less outlier sensitivity) and the
exponential weights of AdaBoost (more sensitive to outliers).

Note that, due to their ability to independently control the link and binding functions,
α-tunable losses can always implement this type of interpolation. This can be used to design
losses that adapt to the presence of outliers in the data, by cross-validation of α. It should
be noted, however, that not all values of α ≥ 0 lead to sensible loss functions. This is due
to the fact that (49) does not hold for these losses. For shrinkage losses, where the property
holds, φσ(v)→ 0 as v →∞ (whenever φ(v) has this property), guaranteeing that examples
of large positive margin have zero weight. For α-tunable losses, where (49) does not hold,
β′φσ(v) can decrease to −∞ faster than 1 − [f∗φσ ]−1(v) goes to zero, as v → ∞. In this
case, examples of large positive margin can receive large positive weight, which is usually
undesirable. The losses of (53) have this behavior for α > 1/2.

7. Experiments

In this section we discuss various experiments conducted to evaluate different properties of
probability regularization.

7.1 Experiments on Two Gaussian Classes

To gain some insight on probability regularization, we considered a simple classification
problem, composed of two Gaussian classes of identity covariance, Σ = I, on a two-
dimensional space. The means were set to (0, 0) and (0.7416, 0.7416), so as to produce
a problem with a Bayes error of 30%. Classifiers were learned with training sets of variable
size and evaluated with a test set of 10, 000 examples. All classifiers were learned with
BoostLR and the GLog loss, using histogram-based weak learners (Masnadi-Shirazi and

2776



A View of Margin Losses as Regularizers of Probability Estimates

Vasconcelos, 2011; Rasolzadeh et al., 2006; Wu et al., 2004). We started by investigating
how the probability estimates varied with the regularization gain σ. The accuracy of the
probability estimates was measured by the mean squared error

MSE =
1

n

n∑
i−1

[η(xi)− η̂(xi)]
2, (54)

where η(xi) and η̂(xi) are the true and estimated posterior probability for test example
xi. The latter was obtained with (51), where G(T )(x) is the predictor learned by BoostLR.
Three regimes were considered. The very small sample regime, where the training set
contained N = 5 examples per class, the moderate sample size regime, where N = 40 and
the large sample regime, where N = 1, 000. Classifiers were learned with BoostLR under
the three regimes, for a range of values of σ in the interval [0.5, 1000]. Figure 9 shows two
complementary views of the MSE data. The top row presents the classical curves of MSE
vs. number of boosting iterations T , for different regularization gains. These plots are
most useful to assess overfitting, which happens when there is a range of T over which the
MSE increases. It is clear that, for both the small and moderate sample sizes, all classifiers
eventually overfit as the number of boosting iterations increases, while no overfitting is
observed for large sample sizes. The bottom row is most useful to assess the impact of
predictor regularization. The data is the same, but these plots show the evolution of the
MSE with σ for fixed T . In this case, overfitting occurs on the left of each plot (small values
of σ, not enough regularization) and underfitting (too much regularization) on the right.

Overall, the plots demonstrate the complementarity between loss-based probability reg-
ularization and classic parameter regularization (due to early stopping, i.e. limiting the
number of weak learners in the final ensemble). This is most clear in the moderate sample
regime, where many of the curves of the middle column of Figure 9 (top) have the same
minimum. Varying the gain σ shifts this minimum, i.e. makes it occur at different num-
bers of boosting iterations. Hence, when a regularization loss is used, there is less need
for early stopping (parameter regularization). This explains the empirical observation that
boosted classifiers can do well even with little parameter regularization (e.g. boosted object
detectors with thousands of weak learners commonly used in computer vision (Viola and
Jones, 2004)). The problem with early stopping is that it can be insufficient for small sam-
ples. This is visible in the left column of Figure 9 (top), where there is too little data and
boosting overfits even in the earliest iterations. The same happens for the moderate sample
size (middle column of Figure 9 top) when the regularization gain is small. In these cases,
by amplifying parameter based regularization, loss-based regularization can substantially
improve the quality of probability estimates. For example, larger σ lead to significant gains
in estimation accuracy, for all numbers of boosting iterations, in the left column of Figure 9
(bottom). As σ increases, the best early-stopped MSE (T = 2) decreases from roughly 20%
to about 5%. Hence, for small samples, loss-based regularization is much more effective
than early stopping.

In summary, loss-based regularization is a more flexible way to control the generalization
ability of the boosted classifier than early stopping. Hence, in all remaining experiments,
we fix the number of boosting iterations and cross-validate the regularization gain. This
regularization strategy has one additional property of interest. As can be seen in the bottom
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Figure 9: Top: MSE as a function of the number of boosting iterations T for different
regularization gains. Bottom: MSE as a function of regularization gain σ for
different numbers of boosting iterations T . From left to right: small, moderate
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row of Figure 9, when the number of iterations T is fixed, the best performing regularization
gain decreases with the sample size. This suggests that, when T is fixed, the cross-validated
σ can be seen as a diagnostic of whether the classifier would benefit from the collection of
further training data. Small samples (left of the figure) require large σ, while a small σ is
sufficient for large samples (right). This effect is illustrated in Figure 10, which presents a
plot of the cross-validated regularization gain as a function of training set size. Note the
monotonic relation between the two variables, suggesting that regularization gain can be
used as a diagnostic for data scarcity. While a large σ suggests that it is worth collecting
more training data, a small σ indicates that such an effort is likely not justified. This can
help learning practitioners perform cost-benefit analysis of their data collection efforts.

7.2 The Role of the Link Function

The next set of experiments used ten binary UCI data sets of relatively small size: (#1)
sonar, (#2) breast cancer prognostic, (#3) breast cancer diagnostic, (#4) original Wisconsin
breast cancer, (#5) Cleveland heart disease, (#6) tic-tac-toe, (#7) echo-cardiogram, (#8)
Haberman’s survival, (#9) Pima-diabetes, and (#10) liver disorder. These experiments
aimed to evaluate the impact of of the choice of regularization (link) function on calibration
and classification accuracy. Since, as discussed in Section 6.3, canonical losses implement
all regularization behaviors possible for tunable regularization losses, we only considered
the losses of Table 2 in these experiments. Each data set was split into five folds, four of
which were used for training and one for testing. This created four train-test pairs per data
set, over which the results were averaged. In all experiments, three of the four training folds
were used for classifier training and one as validation set for parameter selection.

BoostLR was run for 50 iterations, using histogram-based weak learners and regular-
ization gains σ ∈ [0.3, 500]. Classification accuracy was measured with test error. Since
the true posterior probabilities are not known for the UCI data sets, calibration cannot be
evaluated with (54). A measure of calibration commonly used when this is the case is the
cross-entropy between the distributions of the true η and estimated posterior probabilities
η̂ (Niculescu-Mizil and Caruana, 2005). Assuming the quantization of all probabilities into
K probability bins, this is defined as

H(η, η̂) = −
K∑
k=1

p(η = k) log p(η̂ = k) = −Eη[log p(η̂)].

For large samples, the cross-entropy can be estimated with

H(η, η̂) = −
N∑
i=1

1

N
log p(η̂(xi)).

This measure is largest for poorly calibrated classifiers that produce bimodally distributed
posterior estimates, concentrated around η̂ = 0 and η̂ = 1, and smallest for well calibrated
classifiers whose distribution of posteriors is less concentrated, and spread more evenly
between zero and one (Niculescu-Mizil and Caruana, 2005; Mease and Wyner, 2008).

Figure 11 presents curves of the average calibration and classification ranks of the pre-
dictor designed with the GLog loss for each σ. Similar curves were obtained for all losses
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Figure 11: Average calibration (left) and classification (right) rank as a function of regu-
larization gain for the GLog loss on the UCI data.

of Table 2. To produce these plots, a predictor was trained per data set, for 17 values of
σ ∈ [0.3, 10]. The results were then ranked, and rank 1 (17) assigned to the value of σ
of smallest (largest) cross-entropy or classification error. The ranks of each σ were then
averaged over the ten data sets (Demšar, 2006). Note that the curves of classification ac-
curacy and cross entropy rank have similar shape, although the rank curve is smoother for
cross-entropy. This is because the classifier produces binary decisions by thresholding the
predictor output. Nevertheless, the two plots support the conclusion that the best values of
σ for these data sets are in the range of 4 ≤ σ ≤ 6. Note that the average calibration rank
for this range (between 6.5 and 7.5), is substantially better than that (more than 9.5) of
the logistic loss of Figure 1 (which is identical to GLog with σ = 1). For classification, the
difference is similar (between 5.5 and 6.5 for 4 ≤ σ ≤ 6, around 9 for σ = 1). In summary,
regularization strength can have a significant impact in both classification and calibration
performance. The fact that best results occur for relatively large regularization gains is not
surprising, given that these data sets are relatively small.

We next attempted to quantify the intrinsic regularization gain of each data set, i.e.
the regularization gain that leads to best performance on that data set across all losses,
and the benefits of using that regularization over the standard values (e.g. σ = 1 for the
logistic loss in LogitBoost). For this, we averaged the performance of all BoostLR classifiers
learned with the four losses of Table 2, for each value of σ and data set. We then determined
the gain σopt of smallest average classification error per data set. This can be seen as a
loss-independent measure of the intrinsic regularization gain of the data set. The associated
classification error is a loss-independent estimate of the performance of a classifier tuned
to this intrinsic regularization value. These results are summarized in Table 3 (top). For
comparison, we also present the results of AdaBoost, LogitBoost (GLog loss with σ = 1),
the average performance of BoostLR with the four losses of Table 2 when the bandwidth is
constrained to σ = 1, and the drop in classification error due to the tuning to the intrinsic
regularization gain of the data set. To compute this drop, we defined as ε1 the average
error of the BoostLR methods with the intrinsic gain, as ε2 the smallest error of all other
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UCI data set# #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Classification

AdaBoost 11.4 15.2 9.2 6 11.4 21.6 7.4 23.2 42.8 26.6

LogitBoost(σ = 1) 12.4 15.4 8.6 5.6 11.4 46 7.2 25 40.4 26.4

Avg. BoostLR(σ = 1) 13.25 16.4 8.06 5.53 11.6 47.95 7.15 24.6 40.65 27.4

Avg. BoostLR(σopt) 11.6 14.95 6.93 4.86 11.1 13.25 6.7 14.6 38.8 26.5

Drop(%) −1.75 1.64 14.08 12.11 2.63 38.65 6.29 37.06 3.96 −0.37

Calibration

AdaBoost 4.70 4.40 5.31 5.58 3.89 3.453 3.77 3.593 3.43 3.54

LogitBoost(σ = 1) 4.73 4.06 5.16 5.49 3.68 3.414 3.71 3.609 3.42 3.58

Avg. BoostLR(σ = 1) 4.25 3.88 5.20 5.63 3.77 3.419 3.68 3.599 3.41 3.65

Avg. BoostLR(σopt) 3.71 3.83 4.48 4.82 3.58 3.414 3.50 3.595 3.39 3.53

Drop(%) 58.2 8.8 37.3 30.8 29.2 0.0 48.2 −0.7 26.3 5.3

Table 3: Intrinsic gain of regularization, in terms of classification error (top) and probabil-
ity estimation accuracy (bottom), on various UCI data sets. Avg. BoostLR(σ)
is the average error of classifiers learned with the margin losses of Table 2, for
regularization bandwidth σ. σopt is the bandwidth of smallest average error.

methods, and the drop as (1 − ε1
ε2

) × 100%. Note that BoostLR(σopt) outperformed all
other approaches in 8 out of the 10 data sets, virtually tied the best approach in one, and
performed slightly worse than the best method (AdaBoost) in another. On four of the
data sets its relative drop in classification error was larger than 10% and in two larger than
30%. Note also that the averaging over the four losses does not give an unfair advantage to
BoostLR (σopt), since the same average for BoostLR(σ = 1) has performance equivalent to
LogitBoost (which uses one of the four losses of unit gain). A similar analysis is presented
in the bottom half of Table 3 for calibration performance. In this case, the drop is defined
as (1− H1−H

H2−H )× 100% where H1 is the average cross entropy of the BoostLR methods with
the intrinsic gain, H2 the smallest cross entropy of all other methods and H the entropy
(minimum possible cross entropy value) of the problem. BoostLR (σopt) outperformed all
other approaches in 8 out of the 10 data sets with a relative drop in cross entropy of more
than 10% on six, more than 30% on four and more than 40% on two data sets. These
results show that, for an equal amount of parameter regularization (all classifiers have the
same number of weak learners) there can be substantial gains in tuning the regularization
strength of the loss.

We next evaluated the performance of the individual regularization losses. Since they are
canonical, this is equivalent to comparing the associated link f∗φσ or regularization strength
ρφσ functions of (45). Given that the the number of boosting iterations is the same for all
methods, i.e. all classifiers have the same amount of parameter regularization, this compari-
son is indicative of the effectiveness of the different link functions as probability regularizers.
The top half of Table 4 presents the average test error obtained for each UCI data set and
loss. Also shown are the baseline results of AdaBoost and LogitBoost (GLog loss with
σ = 1). The last two columns present two statistics, reporting to the number of wins of
each algorithm. This is the number of data sets in which the algorithm outperformed a set
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UCI data set# #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 W1 W2

Classification

AdaBoost 11.4 11.4 9.4 6.4 14 28 6.6 21.8 41.2 28.2 - 1

LogitBoost 11.6 12.4 10 6.6 13.4 48.6 6.8 21.2 39.6 28.4 - 0

GLog 11.2 11.4 8 5.6 12.4 11.8 7 18.8 38.2 27 9 5

GBoost 12.6 11.6 21 18.6 17.6 7.2 6 21.8 37.6 28.6 3 3

GGauss 13.6 14.4 9 6 13 8.8 7.6 18.4 38.4 30.6 6 1

GLaplace 12 12.8 9 5 12.4 8.2 6.6 20.8 40.6 31.6 6 2

BoostLR wins 1 1 3 3 3 4 2 3 3 1 - -

Drop (%) 1.7 0 14.9 21.9 7.5 74.3 9.1 13.2 5.0 4.2 - -

Calibration

AdaBoost 4.59 4.19 5.47 3.94 5.77 3.61 4.71 3.48 3.442 3.461 - 0

LogitBoost 4.75 3.85 5.47 3.861 5.65 3.57 4.64 3.426 3.438 3.48 - 1

GLog 4.20 3.46 4.59 3.80 5.42 3.67 3.89 3.421 3.40 3.49 8 1

GBoost 3.77 4.60 5.33 3.69 5.21 3.65 3.83 3.406 3.41 3.44 8 4

GGauss 4.07 3.44 4.70 3.71 5.49 3.62 3.87 3.429 3.439 3.53 6 1

GLaplace 3.81 3.48 4.58 3.76 5.31 3.63 3.81 3.41 3.42 3.45 9 2

BoostLR wins 4 3 4 4 4 0 4 3 3 2 - -

Drop (%) 64.52 76.53 41.56 30.18 19.11 −6.50 62.76 22.23 28.52 13.01 - -

Table 4: Cross validated classification error (top) and cross entropy (bottom) for each loss
function and UCI data set. W1 : number of wins over AdaBoost and LogitBoost.
W2 : number of wins over all methods.

of competitors. The two statistics differ in the composition of this set. W1 compares the
performance of each tunable regularization loss to the AdaBoost and LogitBoost baselines,
evaluating how frequently each version of BoostLR outperforms the well established boost-
ing methods. W2 uses all other algorithms in the table as competitors, measuring how many
times each algorithm achieved the best performance among all methods considered. Finally,
the last two rows report similar statistics per data set. The row before last reports the num-
ber of BoostLR algorithms that outperformed both AdaBoost and LogitBoost. The last row
presents the drop in test error between the established boosting methods and BoostLR. To
compute this drop, we found the smallest test error ε1 of Ada and LogitBoost, the smallest
test error ε2 of all BoostLR methods, and defined the drop as (1− ε2/ε1)× 100%.

Several conclusions can be drawn from the table. First, statistic W1 shows that BoostLR
with either the GLog, GGauss, or GLaplace losses, beats both AdaBoost and LogitBoost
in at least half of the data sets. Best performance was achieved by GLog, which beat the
established methods in 9 out 10 data sets. Second, statistic W2 shows that, while BoostLR
with the GLog loss (logistic link) has the overall best performance, different links perform
best for different data sets (3 overall wins for GLaplace, 2 for GBoost, and 1 for GGauss ).
Third, the gains of tunable loss regularization vary substantially from data set to data set.
This is clear from the last two rows of the table, where BoostLR is shown to have modest
improvements (less that 5% drop in error rate) for 3 data sets, significant gains (between
5 and 20% drop) in 5, and massive gains (above 20%) in 2. In general, the magnitude
of the gain is correlated with the number of BoostLR variants that beat AdaBoost and
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LogitBoost, e.g. the more variants beat the established methods the largest the drop in
classification error. This suggests that the regularization gains of AdaBoost and LogitBoost
are severely mistuned for these data sets.

The bottom half of Table 4 presents a similar analysis for calibration performance, using
the cross entropy criteria. In this case the drop is defined as (1 − H1−H

H2−H ) × 100%, where
H1 is the smallest cross entropy of Ada and LogitBoost, H2 the smallest cross entropy of
all BoostLR methods and H the entropy (minimum possible cross entropy value) of the
problem. The cross entropy criteria produced similar results in terms of number of wins,
but the drop in relative cross entropy was much more substantial, with a drop of more than
10% on nine data sets, more than 20% on seven, more than 40% on four and more than
60% on three.

We next evaluated the impact of the link function in the recovery of posterior prob-
abilities. For this, we performed a comparison between BoostLR with shrinkage loss and
GradientBoost + shrinkage. As discussed in Section 6.4, while the two algorithms produce
identical classifiers, the posterior probability estimates are not the same. GradientBoost
relies on (12), BoostLR uses (51). The probabilities recovered, using the GLog loss, on the
ten UCI data sets were compared. In the first set of experiments, the regularization gain of
BoostLR was fixed at σ = 10 and the learning rate of shrinkage at λ = 0.1. The calibration
performance of both algorithms is shown, for each data set, in the top half of Table 5.
BoostLR has considerably better calibration on all ten data sets. We also compared the
results achieved with cross-validation of the regularization gain of BoostLR and the learning
rate of shrinkage. As shown on the bottom half of Table 5, BoostLR has better calibration
on seven of the ten data sets. In summary, even for shrinkage losses, where BoostLR and
GradientBoost with shrinkage produce identical classifiers, the fact that BoostLR uses the
correct link for probability recovery enables it to achieve superior calibration performance.

7.3 The Role of the Binding Function

The following set of experiments aimed to evaluate the impact of the binding function. For
this, we considered the scenario where BoostLR differs from GradientBoost with shrinkage
even for classification, by using the α-tunable loss of (53). As discussed in Section 6.5,
the additional α parameter of this loss enables independent control of binding and link
functions. This allows the loss to adapt to the outlier content of the data. To evaluate
the benefits of this adaptation, we compared the classification and calibration performance
of BoostLR with the loss of (53) to that of AdaBoost with shrinkage. All experiments
relied on five-fold cross-validation. For both algorithms the regularization gain σ was cross-
validated among 10 values in [1, 10]. The α parameter of BoostLR was cross-validated
among 5 values in [0, 1/2]. Various percentages of outliers were added to the ten UCI data
sets by randomly flipping labels of training examples. The classification and calibration
performance of the two algorithms are presented in Figure 12. The figure depicts the
average rank of the classifiers learned by the two methods, over the ten UCI data sets,
as a function of the percentage of outliers. BoostLR has better calibration (smaller rank)
for all outlier percentages. This illustrates the benefits of α-tuning for noisy data. For
classification, the same holds for all outlier percentages other than 15%. The reversal of
ranks for this percentage can be explained by the noisier nature of the classification data
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UCI data set# #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Fixed σ = 10 (λ = 0.1)

BoostLR 4.13 3.91 4.56 5.37 3.47 3.58 3.73 3.84 3.65 4.13

Shrinkage 4.65 4.49 5.30 5.74 4.63 4.97 4.16 4.35 4.97 4.19

Cross validated σ and λ

BoostLR 4.19 3.89 4.59 5.38 3.46 3.45 3.80 3.62 3.40 3.53

Shrinkage 4.66 4.52 5.30 5.70 3.85 3.42 3.87 3.59 3.43 3.46

Table 5: Calibration performance (cross-entropy) of BoostLR and GradientBoost with
shrinkage on the UCI data.

(due to the hard decision made by the classifier). Even though the BoostLR classifiers
are better calibrated, the classification error is larger. We note that better results should
be possible with α-tunable losses that implement binding functions expressly designed to
achieve outlier robustness, e.g. that of the Savage loss (Masnadi-Shirazi and Vasconcelos,
2008). This is left for future work. The goal here was not to produce the classifier of greatest
possible robustness, only to investigate the benefits of independently controlling the link
and binding functions.

7.4 Experiments on Larger Data sets

The data sets used in the previous section are of relatively small size. To investigate the ben-
efits of loss regularization for larger data sets, we considered the ADULT, LETTER.p1 and
LETTER.p2 data sets, which are widely used for comparing ensemble methods (Niculescu-
Mizil and Caruana, 2005; Caruana et al., 2004). Missing values in the ADULT training and
testing sets were omitted, leading to 30,162 training examples, of which 7,508 are positive
and 22,654 negative. The test set consists of 15,060 examples, of which 3,700 are positive
and 11,360 negative. The LETTER data was converted into two binary data sets (Caruana
et al., 2004). The LETTTER.p1 data set treats the confusable letter ”O” as the positive
class, and the remaining 25 letters of the alphabet as the negative class, resulting in a highly
unbalanced classification problem. LETTER.p2 uses the first 13 letters of the alphabet as
the negative class and the last 13 as the positive class, resulting in a balanced but difficult
problem. Both datasets contain 4,000 training and 16,000 test examples. As before, all
classifiers were learned with BoostLR, using histogram weak learners, and cross-validation
of the regularization gain. The performance of the GLog and GLaplacian losses was com-
pared to that of the exponential loss, used by AdaBoost, and GLog with unit gain, used by
LogitBoost. Each boosting algorithm was run for 100 iterations.

Table 6 presents the error achieved by each method, and the corresponding regularization
gain. Note that 1) best performance was never attained with the logistic loss (GLog with
σ = 1) of LogitBoost, or the exponential loss of AdaBoost, 2) each of the two losses of
tuned gain outperformed both standard boosting losses, and 3) in each case the gains were
substantial. Note also that the optimal σ was always smaller than one. This is explained
by the larger size of the datasets used in this experiment. The optimality of small σ in this
experiment and larger σ in the experiments of the previous section is in agreement with
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Figure 12: Average classification (left) and calibration (right) rank as a function of percent-
age of outliers on the UCI data, for BoostLR and AdaBoost with shrinkage.

the observations of Section 7.1. To further investigate this point, we considered reduced
versions of LETTER.p2, by randomly subsampling training examples. More precisely, the
training set was subsampled by a factor of 2 (DIV2) and 4 (DIV4). The size of the test set
was not changed. Table 7 presents 1) the optimal regularization gain for each loss, and 2)
the difference between the number of testing errors produced by the exponential and each
of the regularization losses, for each training set size. Note how 1) the regularization gain
increases for smaller datasets, eventually becoming larger than one, and 2) the classification
gains are larger for the smaller datasets. As previously noted in Section 7.1, these results
suggest that large margins are important for small datasets but do not add much, to classifier
performance, for large ones.

8. Conclusion

Large margins and parameter regularization are commonly used to assure classifier general-
ization. Large margins are implemented with risks based on margin losses, regularization by
inclusion, in these risks, of terms that encourage parameter sparsity. In this work, we have
shown that margin losses can also be viewed as regularizers of posterior class probability
estimates. In fact, an analysis of both 1) probability estimation error, and 2) generalization
bounds, has shown that, for proper losses of generalized logit link, loss-based regularization
amplifies the strength of parameter regularization by a factor equal to the loss margin.
These losses were also shown to have a simple decomposition in terms of a link and a
binding function. The link determines the loss behavior around the classification boundary
and is responsible for its regularization strength. The binding function determines the loss
behavior for large margins and is responsible for its outlier robustness. In this way, link and
binding functions partition the space of losses into equivalence classes of identical proba-
bility regularization or outlier robustness. These equivalence classes are isomorphic to the
set of symmetric scale probability densities of unique maximum at the origin and the set of
monotonically decreasing odd functions, respectively. Each equivalence class contains many
tunable regularization losses, parameterized by a regularization gain σ.

Tunable regularization losses can be used to derive boosting algorithms with loss reg-
ularization (BoostLR) of tunable strength. Three classes of losses were considered in this
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UCI data set ADULT LETTER1 LETTER2
error σ error σ error σ

GLog 2406 0.25 427 0.33 2831 0.5
GLaplacian 2680 0.45 420 0.25 2844 0.3

Exponential 2696 529 2940
Logit (σ = 1) 2673 464 2867

Table 6: Optimal regularization gain and corre-
sponding classification error on the large
UCI datasets.

LETTER2 DIV1 DIV2 DIV4

GLog 109 179 260
σ = 0.5 σ = 1.66 σ = 2

GLaplacian 96 178 186
σ = 0.3 σ = 1 σ = 2

Table 7: Optimal σ as a function of
training set size and corre-
sponding classification er-
ror gain over exponential
loss.

work: 1) canonical losses, which have linear binding functions and no flexibility in terms of
outlier modeling, 2) shrinkage losses, which support equally parameterized link and bind-
ing function pairs, and 3) α-tunable losses, which enable independent parameterization of
link and binding function. BoostLR algorithms with shrinkage losses were then shown to
implement the well known shrinkage procedure. This offers an alternative explanation of
shrinkage as regularization of posterior probability estimates, explaining its success in terms
of large margins and generalization bounds. On the other hand, the flexibility of α-tunable
losses enabled the derivation of a boosting algorithm that generalizes both AdaBoost and
LogitBoost, behaving as either of them according to the data to classify.

Extensive experiments on a series of synthetic and UCI datasets showed that, when the
regularization gain is optimized, BoostLR can substantially outperform previous boosting
algorithms, with respect to both classification error and probability calibration. These re-
sults challenge the popular belief that large-margin classifiers are not capable of producing
calibrated probability estimates. They also shed some light on the synergies between loss-
based and parameter regularization in boosting algorithms, where parameter regularization
is usually implemented by early stopping. For small samples, which demand strong regu-
larization, this can be insufficient, and a large loss regularization gain required. For large
samples, where little regularization is necessary, the bias introduced by the combination
of parameter and loss regularization can be too large. Better results can be obtained by
weakening the regularization. This can be accomplished by using a smaller σ.

Appendix A. Relations Between Loss Margin and Regularization
Strength

In this appendix, we determine the conditions under which the loss margin µφ of (25) is a
measure of the regularization strength of the loss φ.

Lemma 9 Let φ(v) be a twice differentiable proper loss of monotonically increasing inverse
link [f∗φ]−1(η). Then (26) holds. Furthermore, [f∗φ]−1(η) has an inflection point at the origin.

If this inflection point is the maximum of {[f∗φ]−1}′(v), then the regularization strength is
lower bounded by twice the loss margin, as in (27), and φ(v) is a regularization loss if and
only if µφ ≥ 1

2 .
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Proof If φ is proper, it follows from (24) that

φ′(v) =
(
1− [f∗φ]−1(v)

)
[C∗φ]′′

(
[f∗φ]−1(v)

)
{[f∗φ]−1}′(v)

φ′′(v) = −
(
{[f∗φ]−1}′(v)

)2
[C∗φ]′′

(
[f∗φ]−1(v)

)
+

(
1− [f∗φ]−1(v)

)
[C∗φ](3)

(
[f∗φ]−1(v)

) (
{[f∗φ]−1}′(v)

)2
+

(
1− [f∗φ]−1(v)

)
[C∗φ]′′

(
[f∗φ]−1(v)

)
{[f∗φ]−1}′′(v).

From (22) and (23), [f∗φ]−1(0) = 1/2, [C∗φ](3)(η) = −[C∗φ](3)(1 − η), and {[f∗φ]−1}′′(v) =

−{[f∗φ]−1}′′(−v), and it follows that

{[f∗φ]−1}′′(0) = 0 (55)

[C∗φ](3){[f∗φ]−1(0)} = 0, (56)

from which φ′(0) = 1
2 [C∗φ]′′

(
1
2

)
{[f∗φ]−1}′(0), φ′′(0) = −

(
{[f∗φ]−1}′(0)

)2
[C∗φ]′′

(
1
2

)
, and

µφ =
{[f∗φ]−1}′(0)

2
(
{[f∗φ]−1}′(0)

)2 =
ρφ(0)

2
.

Furthermore, from (55), [f∗φ]−1 has an inflection point at the origin. From (14), if this point

is a maximum of {[f∗φ]−1}′, then ρφ(v) ≥ ρφ(0) for all v, (27) holds, and the theorem follows.

Appendix B. The Generalized Logit Link

In this appendix, we discuss some properties of the generalized logit link that are used in
the remaining results of this work.

B.1 Properties

We start by noting that the conditions of Definition 2 are a set of sufficient conditions for
a function to be the link of a proper loss. The monotonicity of Property 1. is sufficient for
the invertibility of π. While it is not necessary that π−1 be increasing, this guarantees that
the probability estimates η = π−1(p) increase with p. Property 2. and 3. suffice for π to
be a link of some proper loss. Property 3. is the condition of (23). When combined with 1.
and 2. it constrains π−1(v) to be in [0, 1]. This guarantees that η is a probability. While
Property 3. is necessary, this is not the case of Property 2. For example,

π−1(v) =
1 + v

2
, v ∈ [−1, 1]

is a valid inverse link. However, the use of such a link requires that p(x) ∈ [−1, 1] for
η(x) = π−1(p(x)) to be a probability. This constraint on p(x) has to be enforced by
learning algorithms, complicating the underlying optimization. We are aware of no benefit

2787



Masnadi-Shirazi and Vasconcelos

in adopting such a link over a generalized logit. Property 2. eliminates all links of this
type. Finally, Property 4. is necessary and sufficient for π−1 to have a unique inflection
point at the origin. Note that the if statement follows from Property 3. but not the only if.
A “staircase” of sigmoids could satisfy 1.-3. and have multiple inflection points. Property
7. of the following lemma shows that this suffices for the inverse of the generalized logit
to have maximum derivative at the origin. It follows that all conditions of Lemma 9 hold
when f∗φ(η) is a generalized logit link, proving Theorem 4.

Lemma 10 A generalized logit π has the following properties

1. π−1(v) ∈ (0, 1)

2. limv→−∞ π
−1(v) = 0

3. π−1(0) = .5

4. (π−1)(n)(−v) = (−1)n+1(π−1)(n)(v)

5. (π−1)(n)(0) = 0, whenever n is even

6. limv→±∞(π−1)(n)(v) = 0, n ≥ 1.

7. (π−1)′(v) has a unique maximum at the origin.

Proof Properties 1.-5. are a straightforward consequence of Properties 1.-3. of Definition
2. Property 6. follows from the fact that π−1 is monotonically increasing and lower and
upper bounded by 0 and 1, respectively. Property 7. then follows from the fact that (π−1)′

is positive for all v and only has one critical point at the origin, by Property 4. of Definition
2.

B.2 Parametric Generalized Logit Links

In this section we show that the set L of generalized logit links is isomorphic to a set of
probability density functions.

Lemma 11 The set L of parametric generalized logit links of (38) is isomorphic to the set
of parametric continuous scale probability density functions (pdfs)

ψσ(v) =
1

σ
ψ
( v
σ

)
,

where ψ(v) has unit scale, a unique maximum at the origin, and ψ(−v) = ψ(v).

Proof Let c(v) =
∫
ψ(v)dv be the cdf of a continuous scale pdf ψ(v). Then c(v) satisfies

Properties 1. and 2. of Definition 2. Property 3. is also met if ψ(v) has symmetry
ψ(−v) = ψ(v), and Property 4. if ψ(v) has a unique maximum at the origin. Finally, from
the continuity of ψ(v), c(v) has an inverse and c−1(v) is a generalized logit link. Since any
generalized logit link with the properties of Definition 2 defines one such cdf, the set of
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generalized logit links is isomorphic to the set of continuous scale pdfs ψ(v) of symmetry
ψ(−v) = ψ(v) and a unique maximum at the origin.

Let ψ(v) be the pdf corresponding to f∗φ(η), i.e. [f∗φ]−1(v) =
∫ v
−∞ ψ(q)dq. Then, for any

σ, it follows from (38) that

[f∗φσ ]−1(v) = [f∗φ]−1
( v
σ

)
is the cdf of ψσ(v), as defined in (44). Since this procedure can be repeated for any link
function f∗φ(η), L is isometric to the set of these pdfs.

Appendix C. The Binding Function

In this appendix, we discuss the properties of the binding function.

Lemma 12 Let βφ(v) be the binding function of a proper loss φ(v) of generalized logit link
f∗φ(η), and minimum risk C∗φ(η). Then

1. the behavior of φ(v) for v → ±∞ is determined by βφ(v).

2. βφ(v) is monotonically decreasing.

3. the mapping [C∗φ]′(η) = βφ

(
f∗φ(η)

)
is one-to-one.

4. βφ(v) is an odd function, i.e. βφ(−v) = −βφ(v).

Proof To prove Property 1. we note that, combining (31) with Properties 2. of Definition 2
and Lemma 10, and C∗φ(0) = C∗φ(1) = 0, it follows that

lim
v→±∞

φ(v) = lim
v→±∞

(1− [f∗φ]−1(v))[C∗φ]′{[f∗φ]−1(v)}.

The property follows from the fact that limv→±∞(1− [f∗φ]−1(v)) ∈ {0, 1} and (34). Property
2 follows from the fact that

β′φ(v) = [C∗φ]′′
(
[f∗φ]−1(v)

)
{[f∗φ]−1}′(v)

C∗φ is concave (Theorem 3) and {[f∗φ]−1}′(v) > 0 (Property 1 of Definition 2). Property 3
then follows from (34) and Property 2. Finally, Property 4 follows from

βφ(−v) = [C∗φ]′
(
[f∗φ]−1(−v)

)
= [C∗φ]′

(
1− [f∗φ]−1(v)

)
= −[C∗φ]′

(
[f∗φ]−1(v)

)
= −βφ(v).

where we have used (22) and (23).

2789



Masnadi-Shirazi and Vasconcelos

Appendix D. Properties of Proper Losses

In this appendix, we derive various properties of proper losses.

D.1 Proper Losses of Generalized Logit Link

The following lemma summarizes various properties of proper losses with generalized logit
link.

Lemma 13 Let φ(v) be a proper loss of generalized logit link f∗φ(η) and binding function
βφ(v). Then, the following properties hold.

1. φ(v) is monotonically decreasing

2. φ(v) is convex if and only if

β′′φ(v)

β′φ(v)
<
{[f∗φ]−1}′(v)

(1− [f∗φ]−1(v))
, ∀v (57)

3. limv→−∞ φ(v) = limv→−∞ βφ(v)

4. φ′(0) = 1
2β
′
φ(0)

5. φ′′(0) = −β′φ(0)

ρφ(0)
.

Proof Property 1. follows from (35) and the facts that (1− [f∗φ]−1(v)) > 0 (Properties 1.
and 2. of Definition 2) and β′φ(v) < 0 (Property 2. of Lemma 12). To prove Property 2.
we take derivatives on both sides of (35),

φ′′(v) = −{[f∗φ]−1}′(v)β′φ(v) + (1− [f∗φ]−1(v))β′′φ(v).

It follows that φ(v) is convex if and only if, for all v, {[f∗φ]−1}′(v)β′φ(v) < (1−[f∗φ]−1(v))β′′φ(v).

Since (1 − [f∗φ]−1(v)) > 0 and β′φ(v) < 0, this is identical to (57). Property 3. follows
from (36) and Property 2. of Lemma 10, since limv→−∞ φ(v) = C∗φ(0) + limv→−∞(1 −
[f∗φ]−1(v))βφ(v), C∗φ(0) = 0, and limv→∞(1 − [f∗φ]−1(v)) = 1. Property 4. is a simple

consequence of (23), which implies that [f∗φ]−1(0) = 1
2 . Finally, Property 5. follows from

φ′′(0) = −{[f∗φ]−1}′(0)β′φ(0) + 1
2β
′′
φ(0) and Property 4. of Lemma 12, which implies that

β′′φ(0) = 0.

D.2 Canonical Regularization Losses

The following lemma summarizes various properties of canonical regularization losses.

Lemma 14 Let φσ(v) be a tunable regularization loss of binding function as in (46). The
following properties hold.
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1. φ′′σ(v) > 0, ∀v

2. limv→∞ φ
′
σ(v) = 0

3. limv→−∞ φ
′
σ(v) = −1

4. φ′σ(0) = −1/2

5. φ′′σ is maximum at the origin.

6. the loss margin and regularization strength are related by 2µφσ = ρφσ(0) = 1
φ′′σ(0)

.

Proof Properties 1. and 2. follow from (47) and Properties 1. and 2. of Definition 2.
Properties 3. to 5. follow from Properties 2., 3., and 7. of Lemma 10. Property 6. follows
from µφσ = σµφ and the combination of (29), Property 5. of Lemma 13, and (46).
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