
1

Cascade R-CNN: High Quality Object Detection
and Instance Segmentation

Zhaowei Cai, and Nuno Vasconcelos, Fellow, IEEE

Abstract—In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The
threshold used to train a detector defines its quality. While the commonly used threshold of 0.5 leads to noisy (low-quality) detections,
detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting,
due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses.
A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU
thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set
for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all
detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses
and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO
dataset, and significantly improves high-quality detection on generic and specific object datasets, including VOC, KITTI, CityPerson,
and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask
R-CNN.

Index Terms—Object Detection, High Quality, Cascade, Bounding Box Regression, Instance Segmentation.

F

1 INTRODUCTION

Object detection is a complex problem, requiring the solu-
tion of two tasks. First, the detector must solve the recogni-
tion problem, distinguishing foreground objects from back-
ground and assigning them the proper object class labels.
Second, the detector must solve the localization problem,
assigning accurate bounding boxes to different objects. An
effective architecture for the solution of the two tasks, on
which many of the recently proposed object detectors are
based, is the two-stage R-CNN framework [19], [20], [35],
[46]. This frames detection as a multi-task learning problem
that combines classification, to solve the recognition prob-
lem, and bounding box regression, to solve localization.

Despite the success of this architecture, the two problems
can be difficult to solve accurately. This is partly due to
the fact that there are many “close” false positives, corre-
sponding to “close but not correct” bounding boxes. An
effective detector must find all true positives in an image,
while suppressing these close false positives. This require-
ment makes detection more difficult than other classification
problems, e.g. object recognition, where the difference be-
tween positives and negatives is not as fine-grained. In fact,
the boundary between positives and negatives must be care-
fully defined. In the literature, this is done by thresholding
the intersection over union (IoU) score between candidate
and ground truth bounding boxes. While the threshold is
typically set at the value of u = 0.5, this is a very loose
requirement for positives. The resulting detectors frequently
produce noisy bounding boxes, as shown in Fig. 1 (a).

• Z. Cai and N. Vasconcelos are with the Department of Electrical and
Computer Engineering, University of California, San Diego, San Diego,
CA 92093, USA, E-mail: {zwcai,nuno}@ucsd.edu.

Manuscript received April, 2019.

person: 1.00

person: 1.00
person: 0.99 person: 0.99

person: 0.87

person: 0.82

person: 0.77

person: 0.70
person: 0.64

person: 0.63

person: 0.56

frisbee: 1.00
frisbee: 1.00

frisbee: 0.99
frisbee: 0.97

(a) Detection of u = 0.5

person: 1.00

person: 0.99
person: 0.96 person: 0.94

person: 0.55 frisbee: 0.99
frisbee: 0.99

frisbee: 0.99
frisbee: 0.93

(b) Detection of u = 0.7

0.5 0.6 0.7 0.8 0.9

(c) Examples of increasing qualities

Fig. 1: (a) and (b) detections by object detectors of increasing qualities,
and (c) examples of increasing quality.

Hypotheses that most humans would consider close false
positives frequently pass the IoU ≥ 0.5 test. While training
examples assembled under the u = 0.5 criterion are rich
and diverse, they make it difficult to train detectors that can
effectively reject close false positives.

In this work, we define the quality of a detection hy-
pothesis as its IoU with the ground truth, and the quality
of a detector as the IoU threshold u used to train it. Some
examples of hypotheses of increasing quality are shown in
Fig. 1 (c). The goal is to investigate the poorly researched
problem of learning high quality object detectors. As shown in
Fig. 1 (b), these are detectors that produce few close false
positives. The starting premise is that a single detector can
only be optimal for a single quality level. This is known
in the cost-sensitive learning literature [11], [41], where the
optimization of different points of the receiver operating
characteristic (ROC) requires different loss functions. The

2

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Input IoU

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
O

ut
pu

t I
oU

Localization Performance

baseline
u=0.5
u=0.6
u=0.7

(a) Regressor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input IoU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Lo
ss

Classification Loss

u=0.5
u=0.6
u=0.7

(b) Classifier

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

IoU Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

A
P

Detection Performance

u=0.5 (AP=0.349)
u=0.6 (AP=0.354)
u=0.7 (AP=0.319)

(c) Detector

Fig. 2: Bounding box localization, classification loss and detection performance of object detectors of increasing IoU threshold u.

main difference is that we consider the optimization for a
given IoU threshold, rather than false positive rate.

Some evidence in support of this premise is given
in Fig. 2, which presents the bounding box localization
performance, classification loss and detection performance,
respectively, of three detectors trained with IoU thresholds
of u = 0.5, 0.6, 0.7. Localization and classification are evalu-
ated as a function of the detection hypothesis IoU. Detection
is evaluated as a function of the IoU threshold, as in COCO
[37]. Fig. 2 (a) shows that the three bounding box regressors
tend to achieve the best performance for examples of IoU
in the vicinity of the threshold used for detector training.
Fig. 2 (c) shows a similar effect for detection, up to some
overfitting for the highest thresholds. The detector trained
with u = 0.5 outperforms the detector trained with u = 0.6
for low IoUs, underperforming it at higher IoUs. In general,
a detector optimized for a single IoU value is not optimal for
other values. This is also confirmed by the classification loss
of Fig. 2 (b). This loss is largest in the neighborhood of the
boundary, where the two classes are hardest to distinguish
and most errors tend to occur. The large peaks in the vicinity
of the thresholds used for detector training suggest that
these thresholds determine the classification boundary, i.e.
the region of largest margin [5], [14]. This, in turn, shows
that the classifiers are optimal for discriminating between
detection hypotheses of IoU below (negatives) and above
(positives) each of these thresholds.

The observations above suggest that high quality de-
tection requires a close match between the quality of the
detector and that of the detection hypotheses. The detec-
tor will only achieve high quality if presented with high
quality proposals. This, however, cannot be guaranteed by
simply increasing the threshold u during training. On the
contrary, as seen for the detector of u = 0.7 in Fig. 2
(c), forcing a high value of u usually degrades detection
performance. We refer to this problem, i.e. that training a
detector with higher threshold leads to poorer performance,
as the paradox of high-quality detection. This problem has two
causes. First, object proposal mechanisms tend to produce
hypotheses distributions heavily imbalanced towards low
quality. In result, the use of larger IoU thresholds during
training exponentially reduces the number of positive train-
ing examples. This is particularly problematic for neural
networks, which are very example intensive, making the
“high u” training strategy very prone to overfitting. Second,
there is a mismatch between the quality of the detector and

that of the hypotheses available at inference time. Since, as
shown in Fig. 2, high quality detectors are only optimal for
high quality hypotheses, detection performance can degrade
substantially for hypotheses of lower quality.

In this paper, we propose a new detector architecture,
denoted as Cascade R-CNN, that addresses these problems,
to enable high quality object detection. The new architecture
is a multi-stage extension of the R-CNN, where detector
stages deeper into the cascade are sequentially more selec-
tive against close false positives. As is usual for classifier
cascades [48], [53], the cascade of R-CNN stages is trained
sequentially, using the output of one stage to train the next.
This leverages the observation that the output IoU of a
bounding box regressor is almost always better than its
input IoU, as can be seen in Fig. 2 (a), where nearly all plots
are above the gray line. In result, the output of a detector
trained with a certain IoU threshold is a good hypothesis
distribution to train the detector of the next higher IoU
threshold. This has some similarity to boostrapping methods
commonly used to assemble datasets for object detection
[13], [53]. The main difference is that the resampling per-
formed by the Cascade R-CNN does not aim to mine hard
negatives. Instead, by adjusting bounding boxes, each stage
aims to find a good set of close false positives for training the
next stage. The main outcome of this resampling is that the
quality of the detection hypotheses increases gradually, from
one stage to the next. In result, the sequence of detectors
addresses the two problems underlying the paradox of high-
quality detection. First, because the resampling operation
guarantees the availability of a large number of examples for
the training of all detectors in the sequence, it is possible
to train detectors of high IoU without overfitting. Second,
the use of the same cascade procedure at inference time
produces a set of hypotheses of progressively higher quality,
well matched to the increasing quality of the detector stages.
This enables higher detection accuracies, as suggested by
Fig. 2.

The Cascade R-CNN is quite simple to implement and
trained end-to-end. Our results show that a vanilla im-
plementation, without any bells and whistles, surpasses
almost all previous state-of-the-art single-model detectors, on
the challenging COCO detection task [37], especially under
the stricter evaluation metrics. In addition, the Cascade R-
CNN can be built with any two-stage object detector based
on the R-CNN framework. We have observed consistent
gains (of 2∼4 points, and more under stricter localization

3

metrics), at a marginal increase in computation. This gain is
independent of the strength of the baseline object detectors,
for all the models we have tested. We thus believe that this
simple and effective detection architecture can be of interest
for many object detection research efforts.

A preliminary version of this manuscript was previously
published in [3]. After the original publication, the Cascade
R-CNN has been successfully reproduced within many
different codebases, including the popular Detectron
[21], PyTorch1, and TensorFlow2, showing consistent and
reliable improvements independently of implementation
codebase. In this expanded version, we have extended
the Cascade R-CNN to instance segmentation, by adding
a mask head to the cascade, denoted as Cascade Mask
R-CNN. This is shown to achieve non-trivial improvements
over the popular Mask R-CNN [24]. A new and more
extensive evaluation is also presented, showing that the
Cascade R-CNN is compatible with many complementary
enhancements proposed in the detection and instance
segmentation literatures, some of which were introduced
after [3], e.g. GroupNorm [55]. Finally, we further present
the results of a larger set of experiments, performed on
various popular generic/specific object detection datasets,
including PASCAL VOC [12], KITTI [15], CityPerson [63]
and WiderFace [60]. These experiments demonstrate that
the paradox of high quality object detection applies to all
these tasks, and that the Cascade R-CNN enables more
effective high quality detection than previously available
methods. Due to these properties, as well as its generality
and flexibility, the Cascade R-CNN has recently been
adopted by the winning teams of the COCO 2018 instance
segmentation challenge3, the OpenImage 2018 challenge4,
and the Wider Challenge 20185. To facilitate future
research, we have released the code on two codebases,
https://github.com/zhaoweicai/cascade-rcnn (Caffe [30])
and https://github.com/zhaoweicai/Detectron-Cascade-
RCNN (Detectron [21]) to facilitate future research.

2 RELATED WORK

Due to the success of the R-CNN [20] detector, which
combines a proposal detector and a region-wise classifier,
this two-stage architecture has become predominant in the
recent past. To reduce redundant CNN computations, the
SPP-Net [25] and Fast R-CNN [19] introduced the idea of
region-wise feature extraction, enabling the sharing of the
bulk of feature computations by object instances. The Faster
R-CNN [46] then achieved further speeds-up by introducing
a region proposal network (RPN), becoming the cornerstone
of modern object detection. Later, some works extended
this detector to address various problems of detail. For
example, the R-FCN [7] proposed efficient region-wise full
convolutions to avoid the heavy CNN computations of the
Faster R-CNN; and the Mask R-CNN [24] added a net-
work head that computes object masks to support instance
segmentation. Some more recent works have focused on

1. https://github.com/open-mmlab/mmdetection
2. https://github.com/tensorpack/tensorpack
3. http://cocodataset.org/#detection-leaderboard
4. https://storage.googleapis.com/openimages/web/challenge.html
5. http://wider-challenge.org/

normalizing feature statistics [44], [55], modeling relations
between instances [27], non maximum suppression (NMS)
[1], and other aspects [38], [49].

Scale invariance, an important requisite for effective
object detection, has also received substantial attention in
the literature [2], [35], [51]. While natural images contain
objects at various scales, the fixed receptive field size of the
filters implemented by the RPN [46] makes it prone to scale
mismatches. To overcome this, the MS-CNN [2] introduced a
multi-scale object proposal network, by generating outputs
at multiple layers. This leverages the different receptive field
sizes of the different layers to produce a set of scale-specific
proposal generators, which is then combined into a strong
multi-scale generator. Similarly, the FPN [35] detects high-
recall proposals at multiple output layers, with recourse to a
scale-invariant feature representation by adding a top-down
connection across feature maps of different network depths.
Both the MS-CNN and FPN rely on a feature pyramid repre-
sentation for multi-scale object detection. SNIP [51], on the
other hand, recently revisited image pyramids in modern
object detection. It normalizes the gradients from different
object scales during training, such that the whole detector is
scale-specific. Scale-invariant detection is achieved by using
an image pyramid at inference.

One-stage object detection architectures have also be-
come popular for their computational efficiency. YOLO
[45] outputs very sparse detection results and enables real-
time object detection, by forwarding the input image once
through an efficient backbone network. SSD [39] detects
objects in a way similar to the RPN [46], but uses multiple
feature maps at different resolutions to cover objects at
various scales. The main limitation of these detectors is that
their accuracy is typically below that of two-stage detectors.
The RetinaNet [36] detector was proposed to address the
extreme foreground-background class imbalance of dense
object detection, achieving results comparable to two-stage
detectors. Recently, CornerNet [32] proposed to detect an
object bounding box as a pair of keypoints, abandoning
the widely used concept of anchors first introduced by
the Faster R-CNN. This detector has achieved very good
performance with the help of some training and testing
enhancements. RefineDet [64] added an anchor refinement
module to the single-shot SSD [39], to improve localization
accuracy. This is somewhat similar to the cascaded local-
ization implemented by the proposed Cascade R-CNN, but
ignores the problem of high-quality detection.

Some explorations in multi-stage object detection have
also been proposed. The multi-region detector of [16] in-
troduced iterative bounding box regression, where a R-CNN is
applied several times to produce successively more accurate
bounding boxes. [17], [18], [59] used a multi-stage procedure
to generate accurate proposals, which are forwarded to an
accurate model (e.g. Fast R-CNN). [42], [61] proposed an
alternative procedure to localize objects sequentially. While
this is similar in spirit to the Cascade-RCNN, these methods
use the same regressor iteratively for accurate localization.
On the other hand, [33], [43] embedded the classic cascade
architecture of [53] in an object detection network. Finally,
[6] iterated between the detection and segmentation tasks,
to achieve improved instance segmentation.

Upon publication of the conference version of this

4

H3

C3

convI

B0 H1

C1 B1

p
o
o
l

H0

C0

(a) Faster R-CNN

convI

B0

p
o
o
l

H1

C1 B1

p
o
o
l

H2

C2 B2

p
o
o
l

H3

C3 B3

(b) Cascade R-CNN

convI

B0

p
o
o
l

H1

C1 B1

p
o
o
l

H1

C2 B2

p
o
o
l

H1

C3 B3

(c) Iterative BBox at inference

convI

B0

H1

C1 B1

p
o
o
l

H2

C2

H3

C3

(d) Integral Loss

Fig. 3: The architectures of different frameworks. “I” is input image, “conv” backbone convolutions, “pool” region-wise feature extraction, “H”
network head, “B” bounding box, and “C” classification. “B0” is proposals in all architectures.

manuscript, several works have pursued the idea behind
Cascade R-CNN [31], [40], [54]. [40], [54] applied it to
single-shot object detectors, showing nontrivial improve-
ments for high quality single-shot detection, for general
objects and pedestrians, respectively. The IoU-Net [31] ex-
plored in greater detail high-quality localization, achieving
some gains over the Cascade R-CNN by cascading more
bounding box regression steps. [23] showed it is possible to
achieve state-of-the-art object detectors without ImageNet
pretraining, with a help of the Cascade R-CNN. These works
show that the Cascade R-CNN idea is robust and applicable
to various object detection architectures. This suggests that
it should continue to be useful despite future advances in
object detection.

3 HIGH QUALITY OBJECT DETECTION

In this section, we discuss the challenges of high quality
object detection.

3.1 Object Detection

While the ideas proposed in this work can be applied to
various detector architectures, we focus on the popular two-
stage architecture of the Faster R-CNN [46], shown in Fig. 3
(a). The first stage is a proposal sub-network, in which the
entire image is processed by a backbone network, e.g. ResNet
[26], and a proposal head (“H0”) is applied to produce
preliminary detection hypotheses, known as object propos-
als. In the second stage, these hypotheses are processed by
a region-of-interest detection sub-network (“H1”), denoted
as a detection head. A final classification score (“C”) and a
bounding box (“B”) are assigned per hypothesis. The entire
detector is learned end-to-end, using a multi-task loss with
bounding box regression and classification components.

3.1.1 Bounding Box Regression

A bounding box b = (bx, by, bw, bh) contains the four
coordinates of an image patch x. Bounding box regression
aims to regress a candidate bounding box b into a target
bounding box g, using a regressor f(x,b). This is learned
from a training set (gi,bi), by minimizing the risk

Rloc[f] =
∑
i

Lloc(f(xi,bi), gi). (1)

As in the Fast R-CNN [19],

Lloc(a,b) =
∑

i∈{x,y,w,h}

smoothL1(ai − bi) (2)

where

smoothL1(x) =

{
0.5x2, |x| < 1

|x| − 0.5, otherwise, (3)

is the smooth L1 loss function. To encourage invariance to
scale and location, smoothL1 operates on the distance vector
∆ = (δx, δy, δw, δh) defined by

δx = (gx − bx)/bw, δy = (gy − by)/bh
δw = log(gw/bw), δh = log(gh/bh).

(4)

Since bounding box regression usually performs minor ad-
justments on b, the numerical values of (4) can be very
small. This usually makes the regression loss much smaller
than the classification loss. To improve the effectiveness
of multi-task learning, ∆ is normalized by its mean and
variance, e.g. δx is replaced by

δ′x =
δx − µx

σx
. (5)

This is widely used in the literature [2], [7], [24], [35], [46].

3.1.2 Classification
The classifier is a function h(x) that assigns an image patch
x to one of M+1 classes, where class 0 contains background
and the remaining classes the objects to detect. h(x) is a
M + 1-dimensional estimate of the posterior distribution
over classes, i.e. hk(x) = p(y = k|x), where y is the
class label. Given a training set (xi, yi), it is learned by
minimizing the classification risk

Rcls[h] =
∑
i

Lcls(h(xi), yi), (6)

where
Lcls(h(x), y) = − log hy(x) (7)

is the cross-entropy loss.

3.2 Detection Quality

Consider a ground truth object of bounding box g associated
with class label y, and a detection hypothesis x of bounding
box b. Since b usually includes an object and some amount
of background, it can be difficult to determine if the detec-
tion is correct. This is usually addressed by the intersection
over union (IoU) metric

IoU(b,g) =
b ∩ g

b ∪ g
. (8)

If the IoU is above a threshold u, x is considered an example
of the class of the object of bounding box g and denoted

5

“positive”. Thus, the class label of a hypothesis x is a
function of u,

yu =

{
y, IoU(b,g) ≥ u
0, otherwise. (9)

If the IoU does not exceed the threshold for any object, x is
assigned to the background and denoted “negative”.

Although there is no need to define positive/neagtive
examples for the bounding box regression task, an IoU
threshold u is also required to select the set of samples

G = {(gi,bi)|IoU(bi,gi) ≥ u} (10)

used to train the regressor. While the IoU thresholds used
for the two tasks do not have to be identical, this is usual
in practice. Hence, the IoU threshold u defines the quality of
a detector. Large thresholds encourage detected bounding
boxes to be tightly aligned with their ground truth counter-
parts. Small thresholds reward detectors that produce loose
bounding boxes, of small overlap with the ground truth.

A main challenge of object detection is that, no matter
the choice of threshold, the detection setting is highly ad-
versarial. When u is high, positives contain less background
but it is difficult to assemble large positive training sets.
When u is low, richer and more diverse positive training
sets are possible, but the trained detector has little incentive
to reject close false positives. In general, it is very difficult
to guarantee that a single classifier performs uniformly well
over all IoU levels. At inference, since the majority of the
hypotheses produced by a proposal detector, e.g. RPN [46]
or selective search [52], have low quality, the detector must
be more discriminant for lower quality hypotheses. A stan-
dard compromise between these conflicting requirements is
to settle on u = 0.5, which is used in almost all modern
object detectors. This, however, is a relatively low threshold,
leading to low quality detections that most humans consider
close false positives, as shown in Fig. 1 (a).

3.3 Challenges to High Quality Detection

Despite the significant progress in object detection of the
past few years, few works attempted to address high quality
detection. This is mainly due to the following reasons.

First, evaluation metrics have historically placed greater
emphasis on the low quality detection regime. For perfor-
mance evaluation, an IoU threshold u is used to determine
whether a detection is a success (IoU(b,g) ≥ u) or failure
(IoU(b,g) < u). Many object detection datasets, including
PASCAL VOC [12], ImageNet [47], Caltech Pedestrian [10],
etc., use u = 0.5. This is partly because these datasets were
established a while ago, when object detection performance
was far from what it is today. However, this loose evaluation
standard is adopted even by relatively recent datasets, such
as WiderFace [60], or CityPersons [63]. This is one of the
main reasons why performance has saturated for many
of these datasets. Others, such as COCO [37] or KITTI
[15] use stricter evaluation metrics: average precision at
u = 0.7 for car in KITTI, and mean average precision across
u = [0.5 : 0.05 : 0.95] in COCO. While recent works have
focused on these less saturated datasets, most detectors are
still designed with the loose IoU threshold of u = 0.5,
associated with the low-quality detection regime. In this

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10
x 10

4

IoU

1st stage

16.7%

8.0%

2.9%

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10
x 10

4

IoU

2nd stage

25.6%

21.7%

17.3%

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10
x 10

4

IoU

3rd stage

28.0%

25.1%

21.7%

Fig. 4: IoU histograms of training samples of each cascade stage. The
distribution of the 1st stage is the RPN output. Shown in red are the
percentage of positives for the corresponding IoU threshold.

work, we show that there is plenty of room for improvement
when a stricter evaluation metric, e.g. u ≥ 0.75, is used and
that it is possible to achieve significant improvements by
designing detectors specifically for the high quality regime.

Second, the design of high quality object detectors is not
a trivial generalization of existing approaches, due to the
paradox of high quality detection. To beat the paradox, it is
necessary to match the qualities of the hypotheses generator
and the object detector. In the literature, there have been
efforts to increase the quality of hypotheses, e.g. by iterative
bounding box regression [17], [18] or better RPN design
[2], [35], and some efforts to increase the quality of the
object detector, e.g. by using the integral loss on a set of
IoU thresholds [62]. These attempts fail to guarantee high
quality detection because they consider only one of the
goals, missing the fact that the qualities of both tasks need to
be increased simultaneously. On one hand, raising the quality
of the hypotheses has little benefit if the detector remains of
low quality, because the latter is not trained to discriminate
high quality from low quality hypotheses. On the other, if
only the detector quality is increased, there are too few high
quality hypotheses for it to classify, leading to no detection
improvement. In fact, because, as shown in Fig. 4 (left), the
set of positive samples decreases quickly with u, a high u
detector is prone to overfitting. Hence, a high u detector can
easily overfit and perform worse than a low u detector, as
shown in Fig. 2 (c).

4 CASCADE R-CNN
In this section we introduce the Cascade R-CNN detector.

4.1 Architecture
The architecture of the Cascade R-CNN is shown in Fig.
3 (b). It is a multi-stage extension of the Faster R-CNN
architecture of Fig. 3 (a). In this work, we focus on the the
detection sub-network, simply adopting the RPN [46] of Fig.
3 (a) for proposal detection. However, the Cascade R-CNN
is not limited to this proposal mechanism, other choices
should be possible. As discussed in the section above, the
goal is to increase the quality of hypotheses and detector
simultaneously, to enable high quality object detection. This
is achieved with a combination of cascaded bounding box
regression and cascaded detection.

4.2 Cascaded Bounding Box Regression
High quality hypotheses can be easily produced during
training, where ground truth bounding boxes are available,
e.g. by sampling around the ground truth. The difficulty
is to produce high quality proposals at inference, when

6

−0.5 0 0.5
−0.5

0

0.5

δ
x

δ y

1st stage

µ
x
 = 0.0020

µ
y
 = 0.0022

σ
x
 = 0.1234

σ
y
 = 0.1297

−0.5 0 0.5
−0.5

0

0.5

δ
x

δ y

2nd stage

µ
x
 = 0.0048

µ
y
 = −0.0012

σ
x
 = 0.0606

σ
y
 = 0.0613

−0.5 0 0.5
−0.5

0

0.5

δ
x

δ y

3rd stage

µ
x
 = 0.0032

µ
y
 = −0.0021

σ
x
 = 0.0391

σ
y
 = 0.0376

−1 0 1
−1

0

1

δ
w

δ h

1st stage

µ
w
 = 0.0161

µ
h
 = 0.0498

σ
w
 = 0.2272

σ
h
 = 0.2255

−1 0 1
−1

0

1

δ
w

δ h

2nd stage

µ
w
 = −0.0007

µ
h
 = 0.0122

σ
w
 = 0.1221

σ
h
 = 0.1230

−1 0 1
−1

0

1

δ
w

δ h

3rd stage

µ
w
 = −0.0017

µ
h
 = 0.0004

σ
w
 = 0.0798

σ
h
 = 0.0773

Fig. 5: Distribution of the distance vector ∆ of (4) (without normaliza-
tion) at different cascade stages. Top: plot of (δx, δy). Bottom: plot of
(δw, δh). Red dots are outliers for the increasing IoU thresholds of later
stages, and the statistics shown are obtained after outlier removal.

ground truth is unavailable. This problem is addressed with
resort to cascaded bounding box regression.

As shown in Fig. 2 (a), a single regressor cannot usually
perform uniformly well over all quality levels. However, as
is commonly done for pose regression [9] or face alignment
[4], [57], [58], the regression task can be decomposed into
a sequence of simpler steps. The Cascade R-CNN detector
implements the idea using a cascaded regressor with the
architecture of Fig. 3 (b). This consists of a cascade of
specialized regressors

f(x,b) = fT ◦ fT−1 ◦ · · · ◦ f1(x,b), (11)

where T is the total number of cascade stages. The key point
is that each regressor ft is optimized for the bounding box
distribution {bt} generated by the previous regressor, rather
than the initial distribution {b1}. In this way, the hypotheses
are improved progressively.

This is illustrated in Fig. 5, which presents the distribu-
tion of the regression distance vector ∆ = (δx, δy, δw, δh) at
different cascade stages. Note that most hypotheses become
closer to the ground truth as they progress through the
cascade. There are also some hypotheses that fail to meet
the stricter IoU criteria of the later cascade stages. These are
declared outliers and eliminated. It should be noted that,
as discussed in Section 3.1.1, ∆ needs be mean/variance
normalized, as in (5), for effective multi-task learning. The
mean and variance statistics computed after this outlier
removal step are used to normalize ∆ at each cascade stage.
Our experiments show that this implementation of cascaded
bounding box regression generates hypotheses of very high
quality at both training and inference.

4.3 Cascaded Detection
As shown in the left of Fig. 4, the initial hypotheses distri-
bution produced by the RPN is heavily tilted towards low
quality. For example, only 2.9% of examples are positive
for an IoU threshold u = 0.7. This makes it difficult to
train a high quality detector. The Cascade R-CNN addresses
the problem by using cascade regression as a resampling
mechanism. This is inspired by Fig. 2 (a), where nearly
all curves are above the diagonal gray line, showing that
a bounding box regressor trained for a certain u tends

to produce bounding boxes of higher IoU. Hence, starting
from examples {(xi,bi)}, cascade regression successively
resamples an example distribution {(x′

i,b′
i)} of higher IoU.

This enables the sets of positive examples of the successive
stages to keep a roughly constant size, even when the detec-
tor quality u is increased. Figure 4 illustrates this property,
showing how the example distribution tilts more heavily
towards high quality examples after each resampling step.

At each stage t, the R-CNN head includes a classifier
ht and a regressor ft optimized for the corresponding IoU
threshold ut, where ut > ut−1. These are learned with loss

L(xt, g) = Lcls(ht(x
t), yt) + λ[yt ≥ 1]Lloc(ft(x

t,bt), g),
(12)

where bt = ft−1(x
t−1,bt−1), g is the ground truth object for

xt, λ = 1 the trade-off coefficient, yt is the label of xt under
the ut criterion, according to (9), [·] is the indicator function.
Note that the use of [·] implies that the IoU threshold u
of bounding box regression is identical to that used for
classification. This cascade learning has three important
consequences for detector training. First, the potential for
overfitting at large IoU thresholds u is reduced, since pos-
itive examples become plentiful at all stages (see Fig. 4).
Second, detectors of deeper stages are optimal for higher
IoU thresholds. Third, because some outliers are removed
as the IoU threshold increases (see Fig. 5), the learning
effectiveness of bounding box regression increases in the
later stages. This simultaneous improvement of hypotheses
and detector quality enables the Cascade R-CNN to beat
the paradox of high quality detection. At inference, the
same cascade is applied. The quality of the hypotheses
is improved sequentially, and higher quality detectors are
only required to operate on higher quality hypotheses, for
which they are optimal. This enables the high quality object
detection results of Fig. 1 (b), as suggested by Fig. 2.

4.4 Differences from Previous Works
The Cascade R-CNN has similarities to previous works
using iterative bounding box regression and integral loss for
detection. There are, however, important differences.

Iterative Bounding Box Regression: Some works [16], [17],
[26] have previously argued that the use of a single bound-
ing box regressor f is insufficient for accurate localization.
These methods apply f iteratively, as a post-processing step

f ′(x,b) = f ◦ f ◦ · · · ◦ f(x,b), (13)

that refines a bounding box b. This is called iterative bounding
box regression and denoted as iterative BBox. It can be imple-
mented with the inference architecture of Fig. 3 (c) where
all heads are identical. Note that this is only for inference, as
training is identical to that of a two-stage object detector, e.g.
the Faster R-CNN of Fig. 3 (a) with u = 0.5. This approaches
ignores two problems. First, as shown in Fig. 2, a regressor
f trained at u = 0.5 is suboptimal for hypotheses of higher
IoUs. It actually degrades bounding box accuracy for IoUs
larger than 0.85. Second, as shown in Fig. 5, the distribution
of bounding boxes changes significantly after each iteration.
While the regressor is optimal for the initial distribution it
can be quite suboptimal after that. Due to these problems,
iterative BBox requires a fair amount of human engineering,

7

I

B0

p
o
o
l

C0

H0

C1 B1S

H1

conv

(a)

I

B0

p
o
o
l

p
o
o
l

C2 B2

p
o
o
l

C3 B3

H2 H3

C1 B1S

H1

conv

(b)

I

B0

p
o
o
l

C1 B1

p
o
o
l

C2 B2

p
o
o
l

C3 B3S

H1 H2 H3

conv

(c)

I

B0

p
o
o
l

C1 B1

p
o
o
l

p
o
o
l

S1 C2 B2S2 C3 B3S3

H1 H2 H3

conv

(d)

Fig. 6: Architectures of the Mask R-CNN (a) and three Cascade Mask R-CNN strategies for instance segmentation (b)-(d). Beyond the definitions
of Fig. 3, “S” denotes a segmentation branch. Note that segmentations branches do not necessarily share heads with the detection branch.

in the form of proposal accumulation, box voting, etc, and
has somewhat unreliable gains [16], [17], [26]. Usually, there
is no benefit beyond applying f twice.

The Cascade R-CNN differs from iterative BBox in sev-
eral ways. First, while iterative BBox is a post-processing
procedure used to improve bounding boxes, the Cascade
R-CNN uses cascade regression as a resampling mecha-
nism that changes the distribution of hypotheses processed
by the different stages. Second, because cascade regres-
sion is used at both training and inference, the discrep-
ancy between training and inference distributions is signif-
icantly reduced. Third, the multiple specialized regressors
{fT , fT−1, · · · , f1} are optimal for the resampled distribu-
tions of the different stages. This is unlike the single f of
(13), which is only optimal for the initial distribution. Our
experiments show that the Cascade R-CNN enables more
precise localization than that possible with iterative BBox,
and requires no human engineering.

Integral Loss: [62] proposed an ensemble of classifiers with
the architecture of Fig. 3 (d) and trained with the integral
loss. This is a loss

Lcls(h(x), y) =
∑
u∈U

Lcls(hu(x), yu) (14)

that targets various quality levels, defined by a set of IoU
thresholds U = {0.5, 0.55, · · · , 0.75}, chosen to fit the eval-
uation metric of the COCO challenge.

The Cascade R-CNN differs from this detector in several
ways. First, (14) fails to address the problem that the various
loss terms operate on different numbers of positives. As
shown on Fig. 4 (left), the set of positive samples decreases
quickly with u. This is particularly problematic because it
makes the high quality classifiers very prone to overfitting.
On the other hand, as shown in Fig. 4, the resampling of
the Cascade R-CNN produces a nearly constant number of
positive examples as the IoU threshold u increases. Second,
at inference, the high quality classifiers are required to pro-
cess proposals of overwhelming low quality, for which they
are not optimal. This is unlike the higher quality detectors
of the Cascade R-CNN, which are only required to operate
on higher quality hypotheses. Third, the integral loss is
designed to fit the COCO metrics and, by definition, the
classifiers are ensembled at inference. The Cascade R-CNN
aims to achieve high quality detection, and the high quality
detector of the last stage can obtain state-of-the-art detection
performance. Due to all this, the integral loss detector of Fig.
3 (d) usually fails to outperform the vanilla detector of Fig.
3 (a), for most quality levels. This is unlike the Cascade R-
CNN, which can achieve significant gains.

5 INSTANCE SEGMENTATION

Instance segmentation has become popular in the recent
past [6], [24], [38]. It aims to predict pixel-level segmentation
for each instance, in addition to determining its object class.
This is more difficult than object detection, which only
predicts a bounding box (plus class) per instance. In general,
instance segmentation is implemented in addition to object
detection, and a stronger object detector usually leads to
improved instance segmentation. The most popular instance
segmentation method is arguably the Mask R-CNN [24].
Like the Cascade R-CNN, it is a variant on the two-stage
detector. In this section, we extend the Cascade R-CNN
architecture to the instance segmentation task, by adding
a segmentation branch similar to that of the Mask R-CNN.

5.1 Mask R-CNN
The Mask R-CNN [24] extends the Faster R-CNN by adding
a segmentation branch in parallel with the existing detection
branch, during training. It has the architecture of Fig. 6 (a).
The training instances are the positive examples also used
to train the detection task. At inference, object detections are
complemented with segmentation masks, for all detected
objects.

5.2 Cascade Mask R-CNN
In the Mask R-CNN, the segmentation branch is inserted in
parallel with the detection branch. However, the Cascade
R-CNN has multiple detection branches. This raises the
questions of 1) where to add the segmentation branch and 2)
how many segmentation branches to add. We consider three
strategies for mask prediction in the Cascade R-CNN. The
first two strategies address the first question, adding a single
mask prediction head at either the first or last stage of the
Cascade R-CNN, as shown in Fig. 6 (b) and (c), respectively.
Since the instances used to train the segmentation branch
are the positives of the detection branch, their number
varies in these two strategies. As shown in Fig. 4, placing
the segmentation head later on the cascade leads to more
examples. However, because segmentation is a pixel-wise
operation, a large number of highly overlapping instances
is not necessarily as helpful as for object detection, which
is a patch-based operation. The third strategy addresses
the second question, adding a segmentation branch to each
cascade stage, as shown in Fig. 6 (d). This maximizes the
diversity of samples used to learn the mask prediction task.

At inference time, all three strategies predict the segmen-
tation masks on the patches produced by the final object
detection stage, irrespective of the cascade stage on which
the segmentation mask is implemented and how many

8

segmentation branches there are. The final mask prediction
is obtained from the single segmentation branch for the
architectures of Fig. 6 (b) and (c), and from the ensemble
of three segmentation branches for the architecture of Fig. 6
(d). Our experiments show that these Cascade Mask R-CNN
architectures outperform the Mask R-CNN.

6 EXPERIMENTAL RESULTS

In this section, we present an extensive evaluation of the
Cascade R-CNN detector.

6.1 Experimental Set-up
Experiments were performed over multiple datasets and
baseline network architectures.

6.1.1 Datasets
The bulk of the experiments was performed on MS-COCO
2017 [37], which contains ∼118k images for training, 5k
for validation (val) and ∼20k for testing without provided
annotations (test-dev). The COCO average precision (AP)
measure averages AP across IoU thresholds from 0.5 to
0.95, with an interval of 0.05. It measures detection per-
formance at various qualities, encouraging high quality
detection results, as discussed in Section 3.3. All models
were trained on the COCO training set and evaluated on
the val set. Final results are also reported on the test-dev
set for fair comparison with the state-of-the-art. To assess
the robustness and generalization ability of the Cascade R-
CNN, experiments were also performed on Pascal VOC [12],
KITTI [15], CityPersons [63] and WiderFace [60]. Instance
segmentation was also evaluated on COCO, using the same
evaluation metrics as object detection. The only difference
is that the IoU is computed with respect to the mask rather
than a bounding box.

6.1.2 Implementation Details
All regressors are class agnostic for simplicity. All Cascade
R-CNN detection stages have the same architecture, which
is the detection head of the baseline detector. Unless other-
wise noted, the Cascade R-CNN is implemented with four
stages: one RPN and three detection heads with thresholds
U = {0.5, 0.6, 0.7}. The sampling of the first detection stage
follows [19], [46]. In subsequent stages, resampling is imple-
mented by using all the regressed outputs from the previous
stage, as discussed in Section 4.3. No data augmentation was
used except standard horizontal image flipping. Inference
was performed at a single image scale, with no further bells
and whistles. All baseline detectors were reimplemented
with Caffe [30], using the same codebase, for fair compar-
ison. Some experiments with the FPN and Mask R-CNN
baselines were implemented on the Detectron platform.

6.1.3 Baseline Networks
To test the versatility of the Cascade R-CNN, experiments
were performed with multiple popular baselines: Faster R-
CNN and MS-CNN [2] with VGG-Net [50] backbone, R-
FCN [7] and FPN [35] with ResNet backbones [26], for the
task of object detection, and Mask R-CNN [24] with ResNet
backbones for instance segmentation. These baselines have

a wide range of performances. Unless noted, their default
settings were used. End-to-end training was used instead of
multi-step training.

Faster R-CNN: the network head has two fully connected
layers. To reduce parameters, [22] was used to prune less
important connections. 2048 units were retained per fully
connected layer and dropout layers were removed. These
changes have negligible effect on detection performance.
Training started with a learning rate of 0.002, which was
reduced by a factor of 10 at 60k and 90k iterations, and
stopped at 100k iterations, on 2 synchronized GPUs, each
holding 4 images per iteration. 128 RoIs were used per
image.

R-FCN: the R-FCN adds a convolutional, a bounding box
regression, and a classification layer to the ResNet. For
this baseline, all Cascade R-CNN heads have this structure.
Online hard negative mining [49] was not used. Training
started with a learning rate of 0.003, which was decreased
by a factor of 10 at 160k and 240k iterations, and stopped at
280k iterations, on 4 synchronized GPUs, each holding one
image per iteration. 256 RoIs were used per image.

FPN: since official source code was not publicly available for
the FPN when we performed our original experiments [3],
the implementation details were somewhat different from
those later made available in the Detectron implementation.
RoIAlign [24] was used for a stronger baseline. This is
denoted as FPN+ and was used in all ablation studies,
with the ResNet-50 as a backbone as usual. Training used
a learning rate of 0.005 for 120k iterations and 0.0005 for the
next 60k iterations, on 8 synchronized GPUs, each holding
one image per iteration. 256 RoIs were used per image. We
have also reimplemented the Cascade R-CNN of FPN on
Detectron platform, where it is publicly available.

MS-CNN: the MS-CNN [2] is a popular multi-scale object
detector for specific object categories, e.g. vehicle, pedes-
trian, face, etc. It was used as baseline detector for ex-
periments on KITTI, CityPersons and WiderFace. For this
baseline, the Cascade R-CNN adopted the same two-step
training strategy of the MS-CNN: proposal sub-network
trained first and then joint end-to-end training. All detec-
tion heads were only added at the second step, where the
learning rate was initially 0.0005, decreased by a factor of 10
at 10k and 20k iterations and stopped at 25k iterations, on
one GPU of batch size 4 images.

Mask R-CNN: the Mask R-CNN was used as baseline for
instance segmentation. The default Detectron implementa-
tion was adopted, using the 1x learning schedule. Training
started with a learning rate of 0.02, which was reduced by
a factor of 10 at 60k and 80k iterations, and stopped at 90k
iterations, on 8 synchronized GPUs, each holding 2 images
per iteration. 512 RoIs were used per image.

6.2 Quality Mismatch
An initial set of experiments was designed to evaluate the
impact of the mistmatch between proposal and detector
quality on detection performance. Figure 7 (a) shows the AP
curves of three individually trained detectors of increasing
IoU threshold in U = {0.5, 0.6, 0.7}. The detector of u = 0.5

9

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IoU Threshold

A
P

Detection Performance

u=0.5 (AP=0.349)
u=0.6 (AP=0.354)
u=0.7 (AP=0.319)
u=0.6 (AP=0.367)
u=0.7 (AP=0.352)

(a)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IoU Threshold

A
P

Detection Performance

u=0.5 (AP=0.394)
u=0.6 (AP=0.457)
u=0.7 (AP=0.495)

(b)
Fig. 7: (a) detection performance of individually trained detectors, with
their own proposals (solid curves) or Cascade R-CNN stage proposals
(dashed curves). (b) results of adding ground truth to the proposal set.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IoU Threshold

A
P

1st Stage

u=0.5 (AP=0.355)
u=0.6 (AP=0.352)
u=0.7 (AP=0.256)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IoU Threshold

A
P

2nd Stage

u=0.5 (AP=0.365)
u=0.6 (AP=0.383)
u=0.7 (AP=0.355)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IoU Threshold

A
P

3rd Stage

u=0.5 (AP=0.368)
u=0.6 (AP=0.384)
u=0.7 (AP=0.383)

Fig. 8: Detection performance of all Cascade R-CNN detectors at all
cascade stages.

outperforms the detector of u = 0.6 at low IoU levels, but
underperforms it at higher levels. However, the detector
of u = 0.7 underperforms the other two. To understand
why this happens, we changed the quality of the proposals
at inference. Figure 7 (b) shows the results obtained when
ground truth bounding boxes were added to the set of
proposals. While all detectors improved, the detector of
u = 0.7 had the largest gains, and the best performance for
almost all IoU levels. These results suggest two conclusions.
First, the commonly used u = 0.5 threshold is not effective
for precise detection, simply more robust to low quality
proposals. Second, precise detection requires hypotheses
that match the detector quality.

Next, the original proposals were replaced by the Cas-
cade R-CNN proposals of higher quality (u = 0.6 and
u = 0.7 used the 2nd and 3rd stage proposals, respec-
tively). Figure 7 (a) suggests that the performance of the
two detectors is significantly improved when the quality
of the test proposals matches the detector quality. Testing
Cascade R-CNN detectors of different qualities at all cascade
stages produced similar observations. Figure 8 shows that
each detector was improved by the use of more precise
hypotheses, with higher quality detectors exhibiting larger
gains. For example, the detector of u = 0.7 performed
poorly for the low quality proposals of the 1st stage, but
much better for the more precise hypotheses available at the
deeper cascade stages. The jointly trained detectors of Fig.
8 also outperformed the individually trained detectors of
Fig. 7 (a), even when the same proposals were used. This
indicates that the detectors are better trained within the
Cascade R-CNN architecture.

6.3 Comparison with Iterative BBox and Integral Loss

In this section, we compare the Cascade R-CNN to the
iterative BBox and integral loss detectors. Iterative BBox was
implemented by applying the detection head of FPN+ base-
line iteratively at inference, three times. The integral loss
detector was implemented with three classification heads,
using U = {0.5, 0.6, 0.7}.

0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Input IoU

O
ut

pu
t I

oU

Localization Performance

baseline
iterative 1st
iterative 3rd
cascade 1st
cascade 3rd

(a)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IoU Threshold

A
P

Integral Loss

u=0.5 (AP=0.354)
u=0.6 (AP=0.355)
u=0.7 (AP=0.337)
ensemble (AP=0.354)

(b)
Fig. 9: (a) localization performance of iterative BBox and Cascade R-
CNN regressors. (b) detection performance of the individual classifiers
of the integral loss detector.

AP AP50 AP60 AP70 AP80 AP90

FPN+ baseline 34.9 57.0 51.9 43.6 29.7 7.1
Iterative BBox 35.4 57.2 52.1 44.2 30.4 8.1
Integral Loss 35.4 57.3 52.5 44.4 29.9 6.9
Cascade R-CNN 38.9 57.8 53.4 46.9 35.8 15.8

TABLE 1: Comparison of the Cascade R-CNN with iterative BBox and
integral loss detectors.

Localization: The localization performances of cascade re-
gression and iterative BBox are compared in Fig. 9 (a).
The use of a single regressor degrades localization for
hypotheses of high IoU. This effect accumulates when the
regressor is applied iteratively, as in iterative BBox, and
performance actually drops with iteration number. Note the
very poor performance of iterative BBox after 3 iterations. On
the contrary, the cascade regressor has better performance
at later stages, outperforming iterative BBox at almost all
IoU levels. Note that, the cascade regression can slightly
degrade high input IoUs, e.g. IoU>0.9, and this degradation
is larger than that of a single regressor of u = 0.7 in Fig. 2
(a). This is because the degradations of the three cascaded
regressors accumulate. However, the decrease in detection
performance is negligible because, as shown in Fig. 4, the
number of hypotheses with such high IoUs is extremely
small.

Integral Loss: Figure 9 (b) summarizes the detection perfor-
mances of all classifiers of the integral loss detector, sharing
a single regressor. The classifier of u = 0.6 is the best at all
IoU levels, with u = 0.7 producing the worst results. The
ensemble of all classifiers shows no visible gain.

Table 1 shows that both iterative BBox and integral loss
marginally improve on the baseline detector, and are not
effective for high quality detection. On the other hand, the
Cascade R-CNN achieves the best performance at all IoU
levels. As expected, the gains are mild for low IoUs, e.g. 0.8
for AP50, but significant for the higher ones, e.g. 6.1 for AP80

and 8.7 for AP90. Note that high quality object detection was
rarely explored before this work. These experiments show
that 1) it has more room for improvement than low quality
detection, which focuses on AP50, and 2) the overall AP can
be significantly improved if it is effectively addressed.

6.4 Ablation Experiments

A few ablation experiments were run to enable a better
understanding of the Cascade R-CNN.

Stage-wise Comparison: Table 2 summarizes stagewise per-
formance. Note that the first stage already outperforms the

10

stage classifier AP AP50 AP60 AP70 AP80 AP90

#1 #1 35.5 57.2 52.4 44.1 30.5 8.1
#2 #2 38.3 57.9 53.4 46.4 35.2 14.2
#3 #3 38.3 56.6 52.2 46.3 35.7 15.9
#2 1 ∼ 2 38.5 58.2 53.8 46.7 35.0 14.0
#3 1 ∼ 3 38.9 57.8 53.4 46.9 35.8 15.8

FPN+ baseline 34.9 57.0 51.9 43.6 29.7 7.1

TABLE 2: Stage-wise performance of the three-stage Cascade R-CNN.
1 ∼ 3 indicates an ensemble result, obtained by averaging the three
classifier probabilities.

IoU↑ update stage
AP AP50 AP60 AP70 AP80 AP90statistics loss

decay 36.8 57.8 52.9 45.4 32.0 10.7
3 decay 38.5 58.4 54.1 47.1 35.0 13.1

3 decay 37.5 57.8 53.1 45.5 33.3 13.1
3 3 decay 38.9 57.8 53.4 46.9 35.8 15.8
3 3 avg 38.9 57.5 53.4 46.9 35.8 16.2

FPN+ baseline 34.9 57.0 51.9 43.6 29.7 7.1

TABLE 3: Ablation experiments. “IoU↑” indicates increasing IoU
thresholds, “update statistics” updating regression statistics, and “stage
loss” weighting of stage losses.

baseline detector, due to the benefits of multi-stage multi-
task learning. Since deeper cascade stages prefer higher
quality localization, they encourage the learning of features
conducive to it. This benefits the earlier cascade stages, due
to the feature sharing by the backbone network. The second
stage improves performance substantially, and the third is
equivalent to the second. This differs from the integral loss
detector, where the higher IoU classifier is relatively weak.
While the former (later) stage is better at low (high) IoU
metrics, the ensemble of all classifiers is the best overall.

IoU Thresholds: A Cascade R-CNN was trained using IoU
threshold u = 0.5 for all heads. In this case, the stages differ
only in the hypotheses at their input. Each stage is trained
with the corresponding hypotheses, i.e. accounting for the
distribution changes of Fig. 5. The first row of Table 3 shows
that this cascade improves on the baseline detector. This
supports the claim that stages should be optimized for the
corresponding sample distributions. The second row shows
that performance improves further when the threshold u
increases across stages. As discussed in Section 4.3, the
detector becomes more selective against close false positives
and specialized to the more precise hypotheses.

Regression Statistics: In Section 3.1.1, we saw that the
distance vector ∆ is normalized by the regression statistics
(mean and variance), as in (5). In the Cascade R-CNN, these
statistics are updated stage by stage, as illustrated in Fig.
5. Updating the statistics of (5) in deeper stages helps the
effective multi-task learning of classification and regression.
Empirically, the learning is not very sensitive to the exact
values of these statistics. For simplicity, we set µ = 0 for all
stages, Σ = (σx, σy, σw, σh) = (0.1, 0.1, 0.2, 0.2) for the first
stage, Σ/2 for the second, and Σ/3 for the third, in all of our
experiments. The third and fourth row of Table 3 show that
this is beneficial, when compared to using the statistics of
the first stage in all stages (the first and second row).

Stage Losses: The Cascade R-CNN has multiple detection
heads, each with its own loss. We have explored two
schemes to combine these losses: decay and avg. In avg, the

stage/total classifier AP AP50 AP60 AP70 AP80 AP90 speed

#1/1 #1 34.9 57.0 51.9 43.6 29.7 7.1 0.095s
#2/2 1 ∼ 2 38.2 58.0 53.6 46.7 34.6 13.6 0.105s
#3/3 1 ∼ 3 38.9 57.8 53.4 46.9 35.8 15.8 0.115s
#3/4 1 ∼ 3 38.9 57.4 53.2 46.8 36.0 16.0 0.115s
#4/4 1 ∼ 4 38.6 57.2 52.8 46.2 35.5 16.3 0.133s

TABLE 4: The impact of the number of stages in Cascade R-CNN.
“total” is the total number of stages in the trained detector.

stage classifier rejection AP AP50 AP60 AP70 AP80 AP90

#1 1 ∼ 3 7 35.8 56.8 52.1 44.7 31.6 8.6
#2 1 ∼ 3 7 38.8 58.1 53.7 46.8 35.7 14.8
#3 1 ∼ 3 7 38.9 57.8 53.4 46.9 35.8 15.8
#3 1 ∼ 3 3 38.9 57.7 53.3 46.9 35.8 15.9

TABLE 5: The cascaded classification performance of the three-stage
Cascade R-CNN.

loss of stage t receives a weight wt = 1/T , where T is
the number of stages. In decay, the weight is wt = 1/2t−1.
For both schemes, the learning rate of the head parameters
of stage t is rescaled by 1/wt, to ensure that these are
sufficiently trained. No rescaling is needed for the backbone
network parameters, since they receive gradients from all
stages. Table 3 shows that 1) avg has somewhat better
performance for high quality metrics, but worse for low
quality ones, and 2) the two methods have similar overall
AP. The decay scheme is used in the remainder of the paper.

Number of Stages: Table 4 summarizes the impact of the
number of stages in the Cascade R-CNN performance.
Adding a second stage significantly improves the baseline
detector. Three detection stages still produce non-trivial
improvement, but the addition of a 4th stage (u = 0.75)
has a slight performance decrease. Note, however, that
while the overall AP degrades, the four-stage cascade has
the best performance at high IoU levels. The three-stage
cascade achieves the best trade-off between cost and AP
performance, and is used in the remaining experiments.

Cascaded Classification: In the Cascade R-CNN architec-
ture of Fig. 3 (b), the cascading operation is only applied to
the bounding box regressor. Beyond this, it is also possible to
implement the cascading operation on classification. Table
5 summarizes the cascade classification performance of a
three-stage Cascade R-CNN. In particular, we study the
embedded cascade architecture of [48], where the final de-
tection scores are the ensemble of the scores of all classifier
stages. The top three rows of Table 5 show the consequences
of the ensembling operation when no examples are rejected.
When compared to the non-ensembled implementation of
Table 2 (top three rows), ensemble classification improves
every stage. Next, we introduce cascade rejection, by setting
a rejection threshold at each stage. An hypotheses is passed
on to the next stage only when its score (sum across all
positive classes) is higher than the rejection threshold of the
current stage. The last row of Table 5 shows that there is no
significant difference to the implementation without rejec-
tion. This observation can be explained by the fact that only
around one thousand proposals emerge from the proposal
generation stage. Since this is a relatively small number,
rejection within the cascade has no noticeable improvement
on either detection accuracy or speed.

11

backbone AP AP50 AP75 APS APM APL

YOLOv2 [45] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5
SSD513 [39]∗ ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
RetinaNet [36]∗ ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2
CornerNet [32]∗⋆ Hourglass-104 42.1 57.8 45.3 20.8 44.8 56.7
Faster R-CNN+++ [26]∗⋆ ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w FPN [35] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN w FPN+ (ours) ResNet-101 38.8 61.1 41.9 21.3 41.8 49.8
G-RMI [28]∗⋆ Inception-ResNet-v2 41.6 62.3 45.6 24.0 43.9 55.2
Deformable R-FCN [8]∗⋆ Aligned-Inception-ResNet 37.5 58.0 40.8 19.4 40.1 52.5
Mask R-CNN [24] ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2
RelationNet [27] ResNet-101 39.0 58.6 42.9 - - -
DetNet [34] DetNet-59 40.3 62.1 43.8 23.6 42.6 50.0
SNIP [51]∗⋆ DPN-98 45.7 67.3 51.1 29.3 48.8 57.1
AttractioNet [17]⋆ VGG16+Wide ResNet 35.7 53.4 39.3 15.6 38.0 52.7
Cascade R-CNN ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2
Cascade R-CNN∗⋆ ResNeXt-152 50.9 69.0 55.8 33.4 53.5 63.3

TABLE 6: Performance of state-of-the-art single-model detectors on COCO test-dev. Entries denoted by ∗ and ⋆ use enhancements at training
and inference, respectively.

backbone cascade
train test model val (5k) test-dev (20k)
speed speed size AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

Faster R-CNN VGG
7 0.12s 0.075s 278M 23.6 43.9 23.0 8.0 26.2 35.5 23.5 43.9 22.6 8.1 25.1 34.7
3 0.14s 0.115s 704M 27.0 44.2 27.7 8.6 29.1 42.2 26.9 44.3 27.8 8.3 28.2 41.1

R-FCN ResNet-50
7 0.19s 0.07s 133M 27.0 48.7 26.9 9.8 30.9 40.3 27.1 49.0 26.9 10.4 29.7 39.2
3 0.24s 0.075s 184M 31.1 49.8 32.8 10.4 34.4 48.5 30.9 49.9 32.6 10.5 33.1 46.9

R-FCN ResNet-101
7 0.23s 0.075s 206M 30.3 52.2 30.8 12.0 34.7 44.3 30.5 52.9 31.2 12.0 33.9 43.8
3 0.29s 0.083s 256M 33.3 52.0 35.2 11.8 37.2 51.1 33.3 52.6 35.2 12.1 36.2 49.3

FPN+ ResNet-50
7 0.30s 0.095s 165M 36.5 58.6 39.2 20.8 40.0 47.8 36.5 59.0 39.2 20.3 38.8 46.4
3 0.33s 0.115s 272M 40.3 59.4 43.7 22.9 43.7 54.1 40.6 59.9 44.0 22.6 42.7 52.1

FPN+ ResNet-101
7 0.38s 0.115s 238M 38.5 60.6 41.7 22.1 41.9 51.1 38.8 61.1 41.9 21.3 41.8 49.8
3 0.41s 0.14s 345M 42.7 61.6 46.6 23.8 46.2 57.4 42.8 62.1 46.3 23.7 45.5 55.2

TABLE 7: Performance of Cascade R-CNN implementations with multiple detectors. All speeds are reported per image on a single Titan Xp GPU.

6.5 Comparison with the state-of-the-art

An implementation of the Cascade R-CNN, based on the
FPN+ detector and the ResNet-101 backbone, is compared
to state-of-the-art single-model detectors in Table 66. The
settings are those of Section 6.1.3, but training used 280k
iterations, with learning rate decreased at 160k and 240k it-
erations. The number of RoIs was also increased to 512. The
top of the table reports to one-stage detectors, the middle to
two-stage, and the bottom to multi-stage (3-stages+RPN for
the Cascade R-CNN). Note that all the compared state-of-
the-art detectors are trained with u = 0.5.

An initial observation is that our FPN+ implementation
is better than the original FPN [35], providing a very strong
baseline. Nevertheless, the extension from FPN+ to Cas-
cade R-CNN improved performance by ∼4 points. In fact,
the vanilla Cascade R-CNN, without any bells and whis-
tles, outperformed almost all single-model detectors under
all evaluation metrics. This includes the COCO challenge
2016 winner G-RMI [28], the recent Deformable R-FCN
[8], RetinaNet [36], Mask R-CNN [24], RelationNet [27],
DetNet [34], CornerNet [32], etc. Note some of these meth-
ods leverage several training or inference enhancements,
e.g. multi-scale, soft NMS [1], etc, making the comparison
very unfair. Finally, compared to the previously best multi-
stage detector on COCO, AttractioNet [17], also using many
enhancements, the vanilla Cascade R-CNN has a gain of 7.1
points.

6. Some detectors are omitted in this comparison because their single-
model results on COCO test-dev are not publicly available.

The only detector that outperforms the Cascade R-CNN
in Table 6 is SNIP [51], which uses multi-scale training
and inference, a larger input size, a stronger backbone,
Soft NMS, and some other enhancements. For a fairer com-
parison, we implemented the Cascade R-CNN with multi-
scale training/inference, a stronger backbone (ResNeXt-152
[56]), mask supervision, etc. This enhanced Cascade R-CNN
surpassed SNIP by 5.2 points. It also outperforms the single-
model MegDet detector (50.6 mAP), which won the COCO
challenge in 2017 and uses many other enhancements [44].
The Cascade R-CNN is conceptually straightforward, sim-
ple to implement, and can be combined, in a plug and play
manner, with many detector architectures.

6.6 Generalization Capacity
To more thoroughly test this claim, a three-stage Cascade R-
CNN was implemented with three baseline detectors: Faster
R-CNN, R-FCN, and FPN+. All settings are as discussed
above, with the variations discussed in Section 6.5 for the
FPN+ detector. Table 7 presents a comparison of the AP
performance of the three detectors.

Detection Performance: Again, our implementations are
better than the original detectors [7], [35], [46]. Still, the
Cascade R-CNN improves on all baselines by 2∼4 points,
independently of their strength. Similar gains are observed
for val and test-dev. These results show that the Cascade
R-CNN is widely applicable across detector architectures.

Codebase and Backbone: The Cascade R-CNN of FPN
was also reimplemented on the Detectron codebase [21]

12

backbone cascade speed AP AP50 AP75 APS APM APL

Fast ResNet-50
7 - 36.4 58.4 39.3 20.3 39.8 48.1
3 - 40.5 58.7 43.9 21.5 43.6 54.9

ResNet-50
7 0.097s 36.7 58.4 39.6 21.1 39.8 48.1
3 0.120s 40.9 59.0 44.6 22.5 43.6 55.3

ResNet-101
7 0.115s 39.4 61.2 43.4 22.6 42.9 51.4
3 0.138s 42.8 61.4 46.8 24.1 45.8 57.4

ResNeXt-101
7 0.190s 41.3 63.7 44.7 25.5 45.3 52.9
3 0.212s 44.7 63.7 48.8 26.3 48.4 58.6

ResNet-50-GN
7 0.144s 38.4 59.9 41.7 22.2 41.2 50.0
3 0.234s 42.2 60.6 45.8 24.7 45.2 55.7

ResNet-101-GN
7 0.178s 39.9 61.3 43.3 23.6 42.8 52.3
3 0.260s 43.8 62.2 47.6 26.2 47.2 57.7

TABLE 8: Performance of various implementations of the Cascade R-
CNN with the FPN detector on Detectron, using the 1x schedule.

stage AP100 AP100
s AP100

m AP100
l AP1k AP1k

s AP1k
m AP1k

l

FPN 47.8 32.2 54.9 65.2 59.1 48.0 66.3 68.4
#1 46.8 31.0 53.8 64.8 58.7 47.6 65.9 68.2
#2 55.3 35.1 61.1 82.5 70.7 55.2 77.7 88.1
#3 56.5 36.1 62.4 84.1 71.4 55.5 78.1 89.8

TABLE 9: Proposal recall of Cascade R-CNN stages.

with various backbone networks. Table 8 summarizes these
experiments, showing very consistent improvements (3∼4
points) across backbones. The Cascade R-CNN has also
been independently reproduced by other research groups,
on PyTorch and TensorFlow. These again show that the
Cascade R-CNN can provide reliable gains across detector
architectures, backbones, codebases, and implementations.

Fast R-CNN: As shown in Fig. 3 (b), the Cascade R-CNN
is not limited to the standard Faster R-CNN architecture. To
test this, we trained the Cascade R-CNN in the way of the
Fast R-CNN, using pre-collected proposals. The results of
Table 8 show that the gains of the Cascade R-CNN hold for
frameworks other than the Faster R-CNN.

Group Normalization: Group normalization (GN) [55] is a
recent normalization technique, published after the Cascade
R-CNN. It addresses the problem that batch normalization
(BN) [29] must be frozen for object detector training, due to
the inaccurate statistics that can be derived from small batch
sizes [44]. GN, an alternative to BN that is independent
of batch size, has comparable performance to large-batch
synchronized BN. Table 8 shows that the Cascade R-CNN
with GN has similar gains to those obersved for the other
architectures. This suggests that the Cascade R-CNN will
continue to be useful even as architectural enhancements
continue to emerge in the literature.

6.7 Proposal Evaluation

Table 9 summarizes the proposal recall performance of a
Cascade R-CNN implemented with the FPN detector and
ResNet-50 backbone. The first Cascade R-CNN stage has
proposal recall close to that of the FPN baseline. The ad-
dition of a bounding box regression stage improves recall
significantly, e.g. from 59.1 to 70.7 for AP1k and close to 20
points for AP1k

l . This shows that the additional bounding
box regression is very effective at improving proposal recall
performance. The addition of a third stage has a smaller but
non-negligible gain. Note that the COCO recall is the mean

AP AP50 AP60 AP70 AP80 AP90

Mask R-CNN 33.9 55.5 49.8 41.4 28.6 8.3
strategy of Fig. 6 (b) 35.0 56.3 50.8 43.0 30.0 9.3
strategy of Fig. 6 (c) 35.4 56.4 50.9 43.2 31.0 10.1
strategy of Fig. 6 (d) 35.5 56.5 51.2 43.4 30.8 10.0

TABLE 10: The instance segmentation comparison among three strate-
gies of the Cascade Mask R-CNN.

stage classifier AP AP50 AP60 AP70 AP80 AP90

#1 #1 37.9/33.9 58.9/55.1 54.3/49.6 46.9/41.6 33.5/28.8 11.7/9.3
#2 #2 40.6/35.1 59.6/56.1 55.3/50.8 49.1/43.0 37.7/30.5 17.2/9.8
#3 #3 41.0/35.2 58.4/55.5 54.5/50.5 49.1/43.1 39.2/30.8 19.1/10.2
#2 1 ∼ 2 40.6/35.1 59.8/56.2 55.5/50.8 49.0/42.8 37.5/30.4 17.1/9.9
#3 1 ∼ 3 41.3/35.4 59.6/56.4 55.6/50.9 49.6/43.2 38.8/31.0 18.9/10.1

Mask R-CNN 37.8/33.9 59.2/55.5 54.7/49.8 47.0/41.4 33.6/28.6 9.9/8.3

TABLE 11: Stage-wise performance of the three-stage Cascade Mask
R-CNN. bbox/mask APs are shown side by side.

recall over IoU thresholds [0.5:0.05:0.95]. This high proposal
recall performance enables the high-quality of the subsquent
object detection task.

6.8 Instance Segmentation by Cascade Mask R-CNN
In this section, we evaluate the instance segmentation per-
formance of the proposed Cascade Mask R-CNN.

Cascade Mask R-CNN strategy: Table 10 summarizes the
instance segmentation performance of the Cascade Mask R-
CNN strategies of Fig. 6. These experiments, use the Mask
R-CNN, implemented on Detectron with 1x schedule as
baseline. All three strategies improve on baseline perfor-
mance. Comparing strategies, (c) outperforms (b). This is
because (b) trains the mask head in the first stage but tests
after the last stage, leading to a mask prediction mismatch.
This mismatch is reduced by (c). The addition of a mask
branch to each stage by strategy (d) does not have noticeable
benefits over (c), but requires much more computation and
memory. Strategy (b) has the best trade-off between cost and
AP performance, and is used in the remainder of the paper.

Stage-wise Comparison: Table 11 is the analogue of Table
2 for instance segmentation, showing the stage-wise per-
formance of the Cascade Mask R-CNN. All observations
are consistent with those previously obtained for object
detection. Similarly to Section 6.4, ensembling the three
stages guarantees the best performance, and the first stage
is slightly better/worse at high/low AP metrics due to the
benefits of multi-stage multi-task learning. The strong cor-
relation between object detection and instance segmentation
is due to the high dependence of instance segmentation on
object detection in the formulation of the Mask R-CNN,
where the mask prediction is performed only within object
bounding boxes and uses a score identical to that of object
detection. However, the cascade framework has smaller
gains for instance segmentation than for object detection,
especially at high quality. For example, an AP90 improve-
ment of 9.0 points for object detection falls to 1.8 points
for instance segmentation. These observations show that
plenty of room remains for improving high quality instance
segmentation.

Mask Head: Table 12 summarizes how the number of layers
that compose the mask head affects the instance segmenta-

13

cascade um head AP AP50 AP60 AP70 AP80 AP90

7 0.5 4conv 32.2 53.6 47.8 39.4 26.6 7.2
7 0.5 2conv 30.9 52.5 46.4 38.0 24.7 6.6
7 0.5 6conv 32.4 53.4 48.0 40.0 26.9 7.5
7 0.6 4conv 32.3 53.6 48.0 39.6 26.8 7.6
7 0.8 4conv 31.9 53.5 47.5 38.8 26.2 7.0
3 0.7 4conv 33.6 54.1 48.8 41.2 29.1 9.2
3 0.7 2conv 32.5 53.2 47.6 39.8 27.4 8.2
3 0.7 6conv 34.0 54.3 49.2 41.7 29.7 9.5
3 0.6 4conv 33.7 54.1 48.9 41.4 28.9 9.2
3 0.8 4conv 33.7 54.1 49.0 41.2 29.0 9.2

TABLE 12: Impact of mask threshold um and number of convolutional
layers in the mask head on instance segmentation AP. Top: Mask R-
CNN, bottom: Cascade Mask R-CNN. In both cases, the first row
shows baseline performance, using default settings. All experiments
use the 0.5x schedule, which has observations consistent with the 1x
schedule.

tion performance of the Cascade R-CNN. For a common
mask threshold um, stronger mask heads have better per-
formance, and the gains are obtained mostly at the higher
APs. However, the gains saturate soon when simply adding
more layers. These observations show that a stronger and
better designed mask head is possibly needed to transfer
more gains on object detection to instance segmentation.

Threshold for Mask Head: As discussed above, the thresh-
old that controls the number of positive/negative examples
has an important role in object detection performance. In
the Mask R-CNN, the mask head uses exactly the same
threshold to identify instance-wise training samples. How-
ever, there is no need for the two thresholds to be identical.
Table 12 summarizes the effect of the mask threshold on
instance segmentation. For the Mask R-CNN, the number
of mask head training samples decreases very quickly with
increasing thresholds (see Fig. 4). In result, the threshold
has some impact on instance segmentation. However, the
impact is negligible for the Cascade Mask R-CNN, where
training samples are plentiful for all thresholds. Overall, the
impact of the threshold on instance segmentation is much
smaller than on object detection. This is due to the fact that
segmentation is a pixel-wise operation and a single training
instance contains many training pixels.

Robustness: To evaluate the instance segmentation robust-
ness of the Cascade Mask R-CNN, several backbone net-
works are compared in Table 13. Since this architecture can
detect objects, detection results are also shown. Note that
the additional mask supervision makes these better than
those of Table 8. The gains of the Cascade Mask R-CNN
are very consistent for all backbone networks. Even when
the strongest model, ResNeXt-152 [56], is used with training
data augmentation and 1.44x schedule, the Cascade Mask
R-CNN has a gain of 2.9 points for detection and 1.0 point
for instance segmentation. Adding inference enhancements,
the gains are still 2.1 points for detection and 0.8 points for
instance segmentation. This robustness explains why the
Cascade R-CNN was widely used in the COCO challenge
2018, where the task is instance segmentation, not object
detection.

6.9 Parameter and Timing Analysis
The introduction of stages in the Cascade R-CNN has an
intuitive effect on the model size and speed of the baseline
detector. First, the number of Cascade R-CNN parameters
increases with the number of stages. More precisely, the in-
crease is linear and proportional to the parameter cardinality
of the baseline detector head, as shown in Table 7. Next, this
property also applies to the computation and running speed
of the Cascade R-CNN. Table 4 shows that the cascade speed
is inversely proportional to its number of stages. When
compared to the overall detector computation, the overhead
of the Cascade R-CNN depends on the computation of the
detection head, at both training and testing. When the latter
is light-weight, e.g. FPN and R-FCN, the overhead is small,
as shown in Table 7 and 8. On the other hand, when the
head is computationally heavy, e.g. the detectors of GN
using convolutions as head, the overhead can be substantial,
as seen in Table 8 and 13. Since the architecture of Fig.
6 (c) is used to implement the Cascade Mask R-CNN, its
computational overhead is equal to that of the Cascade R-
CNN, as shown in Table 13.

6.10 Results on PASCAL VOC
The Cascade R-CNN was further tested on the PASCAL
VOC dataset [12]. Following [39], [46], the models were
trained on VOC2007 and VOC2012 trainval (16,551
images) and tested on VOC2007 test (4,952 images).
Two detector architectures were evaluated: Faster R-CNN
(with AlexNet and VGG-Net backbones) and R-FCN (with
ResNet-50 and ResNet-101). Training details were as dis-
cussed in Section 6.1.3, and both AlexNet and VGG-Net
were pruned. More specifically, Faster R-CNN (R-FCN)
training started with a learning rate of 0.001 (0.002), which
was reduced by a factor of 10 at 30k (60k) and stopped at 45k
(90k) iterations. Since the standard VOC evaluation metric
(AP at IoU of 0.5) is fairly saturated, and the focus of this
work is high quality detection, the COCO metrics were used
for evaluation7. Table 14 summarizes the performance of all
detectors, showing that the Cascade R-CNN significantly
improves the overall AP in all cases. These results are
further evidence for the robustness of the Cascade R-CNN.

6.11 Additional Results on other Datasets
Beyond generic object detection datasets, the Cascade R-
CNN was tested on some specific object detection tasks,
including KITTI [15], CityPerson [63] and WiderFace [60].
The MS-CNN [2], a detector of strong performance on these
tasks, was used as baseline for all of them.

KITTI: One of the most popular datasets for autonomous
driving, KITTI contains 7,481 training/validation images,
and 7,518 for testing with held annotations. The 2D object
detection task contains three categories: car, pedestrian, and
cyclist. Evaluation is based on the VOC AP at IoU of 0.7, 0.5,
and 0.5 for the three categories, respectively. Since the focus
of this work is high quality detection, the Cascade R-CNN
was only tested on the car category. As shown in Table 15,

7. The PASCAL VOC annotations were transformed to COCO format,
and the COCO toolbox used for evaluation. Results are different from
the standard VOC evaluation.

14

backbone cascade
test Object Detection Instance Segmentation

speed AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

ResNet-50
7 0.104s 37.7 59.2 40.9 21.4 40.8 49.8 33.9 55.8 35.8 14.9 36.3 50.9
3 0.126s 41.3 59.4 45.3 23.2 43.8 55.8 35.4 56.4 37.7 15.9 37.7 53.6

ResNet-101
7 0.125s 40.0 61.8 43.7 22.5 43.4 52.7 35.9 58.3 38.0 15.9 38.9 53.2
3 0.145s 43.3 61.7 47.2 24.2 46.3 58.2 37.1 58.6 39.8 16.7 39.7 55.7

ResNet-50-GN
7 0.151s 39.2 60.5 42.9 22.9 42.2 50.6 34.9 57.1 36.9 16.0 37.7 51.2
3 0.241s 42.9 60.7 46.6 25.1 45.9 56.7 36.6 57.7 39.2 16.8 39.3 54.5

ResNet-101-GN
7 0.184s 41.1 62.1 45.1 23.6 44.3 53.1 36.3 58.9 38.5 16.2 39.4 53.6
3 0.264s 44.8 62.8 48.8 26.4 48.0 58.7 38.0 59.8 40.8 18.1 40.7 56.0

ResNeXt-101
7 0.197s 42.1 64.1 45.9 25.6 45.9 54.4 37.3 60.3 39.5 17.8 40.3 55.5
3 0.221s 45.8 64.1 50.3 27.2 49.5 60.1 38.6 60.6 41.5 18.5 41.3 57.2

ResNeXt-152∗
7 0.255s 45.2 66.9 49.7 28.5 49.4 56.8 39.7 63.5 42.4 19.8 42.9 57.3
3 0.287s 48.1 66.7 52.6 29.3 52.2 62.1 40.7 63.7 43.8 19.9 44.0 59.1

ResNeXt-152∗⋆
7 - 48.1 68.3 52.9 32.6 51.8 61.3 41.5 65.1 44.7 22.0 44.8 59.8
3 - 50.2 68.2 55.0 33.1 53.9 64.2 42.3 65.4 45.8 21.9 45.7 60.9

TABLE 13: Performance of the Cascade Mask R-CNN on multiple backbone networks on COCO 2017 val. ∗ and ⋆ denotes enhancement
techniques at training and inference, respectively, as in [21].

backbone cascade AP AP50 AP75

Faster R-CNN AlexNet
7 29.4 63.2 23.7
3 38.9 66.5 40.5

Faster R-CNN VGG
7 42.9 76.4 44.1
3 51.2 79.1 56.3

R-FCN RetNet-50
7 44.8 77.5 46.8
3 51.8 78.5 57.1

R-FCN ResNet-101
7 49.4 79.8 53.2
3 54.2 79.6 59.2

TABLE 14: Detection results on PASCAL VOC 2007 test.

cascade Easy Moderate Hard

AP70
7 90.22 89.08 76.50
3 90.68 89.95 78.40

TABLE 15: MS-CNN detection results for the car class on KITTI test set.

it improved the baseline by 0.87 points for the Moderate,
and 1.9 points for the Hard regime, on the test set. These
improvements are nontrivial, given that MS-CNN is a strong
detector and the KITTI car detection task is fairly saturated.

CityPersons: CityPersons is a recently published pedestrian
detection dataset, collected across multiple European cities.
It contains 2,975 training and 500 validation images, and
1,575 images for testing with held annotations. Evaluation
is based on miss-rate (MR) at IoU=0.5. We also report
results for MR at IoU=0.75, which is more commensurate
with high quality detection. This is consistent with a recent
trend to adopt the stricter COCO metric for pedestrian and
face detection, see e.g. the Wider Challenge 2018. Table 16
compares the validation set performance of the Cascade
R-CNN with that of the baseline MS-CNN (performances
on validation and test sets are usually equivalent on this
dataset). The Cascade R-CNN has large performance gains,
especially for the stricter evaluation metric. For example, it
improves the baseline performance by ∼10 points on the
Reasonable set at MR75.

WiderFace: One of the most challenging face detection
datasets, mainly due to its diversity in scale, pose and
occlusion, WiderFace contains 32,203 images with 393,703
annotated faces, of which 12,880 are used for training,
3,226 for validation, and the remainder for testing with
held annotations. Evaluation is based on the VOC AP at

cascade Reasonable Small Heavy All

MR50
7 13.07 40.42 53.55 38.74
3 11.96 38.37 49.41 36.83

MR75
7 38.23 59.84 85.06 65.56
3 28.45 56.24 81.86 58.24

TABLE 16: MS-CNN detection results on CityPersons validation set.

cascade Easy Medium Hard

AP50
7 91.1 90.6 81.0
3 91.3 90.3 81.1

AP75
7 59.7 61.3 40.7
3 68.7 66.3 42.8

TABLE 17: MS-CNN Detection results on WiderFace validation set.

IoU=0.5 on three subsets, easy, medium and hard, of
different detection difficulty. Again, we have used AP at
IoU=0.5 and IoU=0.75 and evaluation on the validation set.
Table 17 shows that, while the Cascade R-CNN is close to
the baseline MS-CNN for AP50, it significantly boosts its
performance for AP75. The gain is smaller on the hard
than on the easy and medium, because the former contains
mainly very small and heavily occluded faces, for which
high quality detection is difficult. This observation mirrors
the COCO experiments of Table 7, where improvements in
APS are smaller than for APL.

7 CONCLUSION

In this work, we have proposed a multi-stage object de-
tection framework, the Cascade R-CNN, for high quality
object detection, a rarely explored problem in the detection
literature. This architecture was shown to overcome the high
quality detection challenges of overfitting during training
and quality mismatch during inference. This is achieved
by training stages sequentially, using the output of one to
train the next, and the same cascade is applied at inference.
The Cascade R-CNN was shown to achieve very consis-
tent performance gains on multiple challenging datasets,
including COCO, PASCAL VOC, KITTI, CityPersons, and
WiderFace, for both generic and specific object detection.
These gains were also observed for many object detectors,
backbone networks, and techniques for detection and in-
stance segmentation. We thus believe that the Cascade R-

15

CNN can be useful for many future object detection and
instance segmentation research efforts.

Acknowledgment: This work was funded by NSF Awards
IIS-1546305 and IIS-1637941, and a GPU donation from
NVIDIA. We would also like to thank Kaiming He for
valuable discussions.

REFERENCES

[1] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis. Soft-nms -
improving object detection with one line of code. In ICCV, pages
5562–5570, 2017. 3, 11

[2] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos. A unified multi-
scale deep convolutional neural network for fast object detection.
In ECCV, pages 354–370, 2016. 3, 4, 5, 8, 13

[3] Z. Cai and N. Vasconcelos. Cascade R-CNN: Delving into high
quality object detection. In CVPR, pages 6154–6162, 2018. 3, 8

[4] X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by explicit shape
regression. In CVPR, pages 2887–2894, 2012. 6

[5] C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995. 2

[6] J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation
via multi-task network cascades. In CVPR, pages 3150–3158, 2016.
3, 7

[7] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: object detection via region-
based fully convolutional networks. In NIPS, pages 379–387, 2016.
3, 4, 8, 11

[8] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.
Deformable convolutional networks. In ICCV, pages 764–773,
2017. 11

[9] P. Dollár, P. Welinder, and P. Perona. Cascaded pose regression. In
CVPR, pages 1078–1085, 2010. 6

[10] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection:
An evaluation of the state of the art. IEEE Trans. Pattern Anal.
Mach. Intell., 34(4):743–761, 2012. 5

[11] C. Elkan. The foundations of cost-sensitive learning. In IJCAI,
pages 973–978, 2001. 1

[12] M. Everingham, L. J. V. Gool, C. K. I. Williams, J. M. Winn, and
A. Zisserman. The pascal visual object classes (VOC) challenge.
International Journal of Computer Vision, 88(2):303–338, 2010. 3, 5, 8,
13

[13] P. F. Felzenszwalb, R. Girshick, D. A. McAllester, and D. Ramanan.
Object detection with discriminatively trained part-based models.
IEEE Trans. Pattern Anal. Mach. Intell., 32(9):1627–1645, 2010. 2

[14] Y. Freund and R. E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. In EuroCOLT,
pages 23–37, 1995. 2

[15] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? the KITTI vision benchmark suite. In CVPR, pages 3354–
3361, 2012. 3, 5, 8, 13

[16] S. Gidaris and N. Komodakis. Object detection via a multi-region
and semantic segmentation-aware CNN model. In ICCV, pages
1134–1142, 2015. 3, 6, 7

[17] S. Gidaris and N. Komodakis. Attend refine repeat: Active box
proposal generation via in-out localization. In BMVC, 2016. 3, 5,
6, 7, 11

[18] S. Gidaris and N. Komodakis. Locnet: Improving localization
accuracy for object detection. In CVPR, pages 789–798, 2016. 3,
5

[19] R. Girshick. Fast R-CNN. In ICCV, pages 1440–1448, 2015. 1, 3, 4,
8

[20] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hi-
erarchies for accurate object detection and semantic segmentation.
In CVPR, pages 580–587, 2014. 1, 3

[21] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, and K. He. De-
tectron. https://github.com/facebookresearch/detectron, 2018. 3,
11, 14

[22] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and
connections for efficient neural network. In NIPS, pages 1135–
1143, 2015. 8

[23] K. He, R. Girshick, and P. Dollár. Rethinking imagenet pre-
training. In ICCV, pages 4918–4927, 2019. 4

[24] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In
ICCV, pages 2961–2969, 2017. 3, 4, 7, 8, 11

[25] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. In ECCV,
pages 346–361, 2014. 3

[26] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In CVPR, pages 770–778, 2016. 4, 6, 7, 8, 11

[27] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei. Relation networks for
object detection. In CVPR, pages 3588–3597, 2018. 3, 11

[28] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy.
Speed/accuracy trade-offs for modern convolutional object detec-
tors. In CVPR, pages 3296–3297, 2017. 11

[29] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML,
pages 448–456, 2015. 12

[30] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture
for fast feature embedding. In MM, pages 675–678, 2014. 3, 8

[31] B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang. Acquisition of
localization confidence for accurate object detection. In ECCV,
pages 816–832, 2018. 4

[32] H. Law and J. Deng. Cornernet: Detecting objects as paired
keypoints. In ECCV, pages 765–781, 2018. 3, 11

[33] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolutional
neural network cascade for face detection. In CVPR, pages 5325–
5334, 2015. 3

[34] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, and J. Sun. Detnet: Design
backbone for object detection. In ECCV, pages 339–354, 2018. 11

[35] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Be-
longie. Feature pyramid networks for object detection. In CVPR,
pages 2117–2125, 2017. 1, 3, 4, 5, 8, 11

[36] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for
dense object detection. In ICCV, pages 2980–2988, 2017. 3, 11

[37] T.-Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick. Microsoft COCO: common objects in
context. In ECCV, pages 740–755, 2014. 2, 5, 8

[38] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation network
for instance segmentation. In CVPR, pages 8759–8768, 2018. 3, 7

[39] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and
A. C. Berg. SSD: single shot multibox detector. In ECCV, pages
21–37, 2016. 3, 11, 13

[40] W. Liu, S. Liao, W. Hu, X. Liang, and X. Chen. Learning effi-
cient single-stage pedestrian detectors by asymptotic localization
fitting. In ECCV, pages 643–659, 2018. 4

[41] H. Masnadi-Shirazi and N. Vasconcelos. Cost-sensitive boosting.
IEEE Trans. Pattern Anal. Mach. Intell., 33(2):294–309, 2011. 1

[42] M. Najibi, M. Rastegari, and L. S. Davis. G-CNN: an iterative grid
based object detector. In CVPR, pages 2369–2377, 2016. 3

[43] W. Ouyang, K. Wang, X. Zhu, and X. Wang. Chained cascade
network for object detection. In ICCV, pages 1956–1964, 2017. 3

[44] C. Peng, T. Xiao, Z. Li, Y. Jiang, X. Zhang, K. Jia, G. Yu, and J. Sun.
Megdet: A large mini-batch object detector. In CVPR, pages 6181–
6189, 2018. 3, 11, 12

[45] J. Redmon, S. K. Divvala, R. Girshick, and A. Farhadi. You only
look once: Unified, real-time object detection. In CVPR, pages 779–
788, 2016. 3, 11

[46] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: towards
real-time object detection with region proposal networks. In NIPS,
pages 91–99, 2015. 1, 3, 4, 5, 8, 11, 13

[47] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg,
and F. Li. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252, 2015. 5

[48] M. J. Saberian and N. Vasconcelos. Learning optimal embedded
cascades. IEEE Trans. Pattern Anal. Mach. Intell., 34(10):2005–2018,
2012. 2, 10

[49] A. Shrivastava, A. Gupta, and R. Girshick. Training region-based
object detectors with online hard example mining. In CVPR, pages
761–769, 2016. 3, 8

[50] K. Simonyan and A. Zisserman. Very deep convolutional net-
works for large-scale image recognition. In ICLR, 2015. 8

[51] B. Singh and L. S. Davis. An analysis of scale invariance in object
detection–snip. In CVPR, pages 3578–3587, 2018. 3, 11

[52] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.
Smeulders. Selective search for object recognition. International
Journal of Computer Vision, 104(2):154–171, 2013. 5

[53] P. A. Viola and M. J. Jones. Robust real-time face detection.
International Journal of Computer Vision, 57(2):137–154, 2004. 2, 3

[54] X. Wu, D. Zhang, J. Zhu, and S. C. H. Hoi. Single-shot bidirec-
tional pyramid networks for high-quality object detection. CoRR,
abs/1803.08208, 2018. 4

[55] Y. Wu and K. He. Group normalization. In ECCV, pages 3–19,
2018. 3, 12

[56] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual
transformations for deep neural networks. In CVPR, pages 5987–

16

5995, 2017. 11, 13
[57] X. Xiong and F. D. la Torre. Supervised descent method and its

applications to face alignment. In CVPR, pages 532–539, 2013. 6
[58] J. Yan, Z. Lei, D. Yi, and S. Li. Learn to combine multiple

hypotheses for accurate face alignment. In ICCV Workshops, pages
392–396, 2013. 6

[59] B. Yang, J. Yan, Z. Lei, and S. Z. Li. CRAFT objects from images.
In CVPR, pages 6043–6051, 2016. 3

[60] S. Yang, P. Luo, C. C. Loy, and X. Tang. WIDER FACE: A face
detection benchmark. In CVPR, pages 5525–5533, 2016. 3, 5, 8, 13

[61] D. Yoo, S. Park, J. Lee, A. S. Paek, and I. Kweon. Attentionnet:
Aggregating weak directions for accurate object detection. In
ICCV, pages 2659–2667, 2015. 3

[62] S. Zagoruyko, A. Lerer, T.-Y. Lin, P. O. Pinheiro, S. Gross, S. Chin-
tala, and P. Dollár. A multipath network for object detection. In
BMVC, 2016. 5, 7

[63] S. Zhang, R. Benenson, and B. Schiele. Citypersons: A diverse
dataset for pedestrian detection. In CVPR, pages 4457–4465, 2017.
3, 5, 8, 13

[64] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li. Single-shot
refinement neural network for object detection. In CVPR, pages
4203–4212, 2018. 3

Zhaowei Cai is a Ph.D. candidate in Electrical
and Computer Engineering Department at the
University of California, San Diego. He received
the B.S. degree in Automation from Dalian Mar-
itime University in 2011. From 2011 to 2013,
he worked as research assistant at Institute of
Automation, Chinese Academy of Sciences. His
current research interests are in computer vision
and machine learning, including object detection
and recognition.

Nuno Vasconcelos received the licenciatura
in electrical engineering and computer science
from the Universidade do Porto, Portugal,
and the MS and PhD degrees from the
Massachusetts Institute of Technology. He is
a Professor in the Electrical and Computer
Engineering Department at the University of
California, San Diego, where he heads the
Statistical Visual Computing Laboratory. He has
received a NSF CAREER award, a Hellman
Fellowship, several best paper awards, and

has authored more than 150 peer-reviewed publications. He has been
Area Chair of multiple computer vision conferences, and is currently an
Associate Editor of the IEEE Transactions on PAMI. In 2017, he was
elected Fellow of the IEEE.

