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Learning Complexity-Aware Cascades
for Pedestrian Detection

Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos, Fellow, IEEE

Abstract—The problem of pedestrian detection is considered. The design of complexity-aware cascaded pedestrian detectors,
combining features of very different complexities, is investigated. A new cascade design procedure is introduced, by formulating
cascade learning as the Lagrangian optimization of a risk that accounts for both accuracy and complexity. A boosting algorithm,
denoted as complexity aware cascade training (CompACT), is then derived to solve this optimization. CompACT cascades are shown to
seek an optimal trade-off between accuracy and complexity by pushing features of higher complexity to the later cascade stages,
where only a few difficult candidate patches remain to be classified. This enables the use of features of vastly different complexities in a
single detector. In result, the feature pool can be expanded to features previously impractical for cascade design, such as the
responses of a deep convolutional neural network (CNN). This is demonstrated through the design of pedestrian detectors with a pool
of features whose complexities span orders of magnitude. The resulting cascade generalizes the combination of a CNN with an object
proposal mechanism: rather than a pre-processing stage, CompACT cascades seamlessly integrate CNNs in their stages. This
enables accurate detection at fairly fast speeds.

Index Terms—Real-time pedestrian detection, detector cascades, boosting, complexity constrained learning.
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1 INTRODUCTION

P EDESTRIAN detection is an important problem in com-
puter vision, with application to smart vehicles, surveil-

lance, etc. Due to the real-time implementation requirements
of many of these applications, the detector cascade archi-
tecture of [49] has a long history in pedestrian detection.
It relies on the sliding window paradigm, processing each
image patch with a sequence of binary classifiers, known
as cascade stages. Each stage either rejects the image patch
or passes it to the subsequent stages. This leads to two
important properties. First, because most patches can be
rejected by early stages of low complexity, detection can be
fast. Second, because the remaining false positives can be
rejected by complex detectors, deeper into the cascade, it can
also be accurate. In fact, because final stages are rarely used,
their complexity is not an impediment to fast detection.

While the cascade detection principle is intuitive, its
implementation is far from trivial. Early cascade designs
required extensive heuristics to determine the configuration
of cascade stages [3], [49], [52]. A common assumption, by
these methods, is that all features have equivalent complex-
ity. This significantly simplifies the design, which reduces
to choosing features so as to maximize detection accuracy.
In fact, popular methods [3], [11] simply use a boosting al-
gorithm (typically AdaBoost [16]) to design a non-cascaded
classifier and then transform it into a cascade, by addition
of thresholds. These approaches suffer from the problem
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that the “equivalent feature complexity” hypothesis only
produces sensible cascades when applied to features that
indeed have similar complexity.

In result, these methods have difficulties to accommo-
date features of widely varying complexity. This is a prob-
lem for applications that require diverse feature sets [1], [35],
[57], and has become critical after the introduction of deep
learning [26], [45]. On one hand, it is now well known that
high detection rates require deep learning models. On the
other, it is quite difficult to learn a cascade that combines
these with the very efficient detectors needed in the early
cascade stages. In fact, a complexity insensitive boosting
algorithm, such as AdaBoost, will start by selecting the deep
features, which are most accurate but also the most complex,
for the early stages. This produces very slow cascades.

In object detection, an alternative strategy has emerged
to address the intractability of sliding windows for deep
learning. This consists of using an object proposal mech-
anism [48], which selects patches to process by a more
powerful classifier. Various object detectors, such as the R-
CNN [21], Fast-RCNN [20] and Faster-RCNN [38], are based
on this architecture. While efficient, this strategy effectively
implements a two stage cascade. Since there is no reason
to believe that two stages guarantee the optimal trade-
off between accuracy and speed, it does not necessarily
guarantee the highest detection rate for a given complexity.
For pedestrian detection, object proposals are frequently
implemented with weak pedestrian detectors, sometimes
cascaded detectors themselves [24]. The success of the some-
what arbitrary decomposition into a cascade and a deep
classifier suggests that good performance should be possible
for cascades with stages of deep learning models.

The introduction of deep learning has also generated a
shift in the computer architectures used for object recog-
nition. While classical cascades can be implemented on
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CPUs, deep learning model require dedicated GPUs. These
create problems to applications, due to their high cost and
energy consumption. In practice, detector design requires
consideration of the trade-offs between accuracy, running
time, energy consumption, and implementation cost. These
different facets of “complexity” vary in importance from
application to application. While speed is critical for a smart
car braking system, energy (battery time) is much more
important for drone applications. On platforms like drones
or home surveillance, it may not be cost-effective to use a
GPU-based detector of high accuracy, e.g it could be better
to eliminate the GPU and complement a classic CPU-based
detector with one using radar or some other modality.

In a CPU architecture, all these costs are (approximately)
linear on the number of computations required for the detec-
tion. Computation (or speed) can thus be used as a universal
measure of complexity, simplifying the design of the loss
functions needed to learn complexity-aware algorithms. For
GPU-based detectors this is much harder to accomplish. In
this case, computation, speed, and energy consumption are
not linearly related, due to the parallel implementation of
all computations. In the detection context, where different
image areas have different classification complexity, the
optimal allocation of computation and energy is spatially
varying. This is, however, at odds with the parallel im-
plementation of image-wide layers, which guarantees op-
timal speed. Modern convolutional neural network (CNN)
libraries favor the latter, leading to detectors that are fast
but perform many unnecessary computations, increasing
detector cost and energy consumption.

In this work, we address these problems by seeking an
algorithm for optimal cascade learning under a criterion
that penalizes both detection errors and complexity. For the
latter, we introduce a definition of complexity risk akin to
the empirical risk commonly used for classifier design. This
makes it possible to define quantities such as complexity
margins and complexity losses, and account for these in the
learning process. We do this with recourse to a Lagrangian
formulation, which optimizes for the usual classification
risk under a constraint in the complexity risk. While the
Lagrangian formulation can account for any of the facets
of complexity discussed above, we focus on computational
complexity in this work. A boosting algorithm that mini-
mizes this Lagrangian is then derived.

This algorithm, denoted Complexity-Aware Cascade Train-
ing (CompACT), is shown to select inexpensive features in
the early cascade stages, pushing the more expensive ones
to the later stages. This enables the combination of features
of vastly different complexities in a single detector. These
properties are demonstrated by the successful application of
CompACT to the problem of pedestrian detection, using a
pool of features ranging from Haar wavelets to deep CNNs.
In particular, we show that it is possible to embed deep
CNNs as the final stages of classical detector cascades. This
leads to mixed CPU/GPU solutions, that provide practition-
ers with flexible families of models, ranging from cheap and
energy efficient CPU-based cascades, to cascades using GPU
stages that emphasize speed or recognition accuracy.

Overall, this work makes four major contributions. First,
it proposes a novel algorithm for learning complexity aware
cascades, which optimally trade-off accuracy and speed. To

the best of our knowledge, this is the first algorithm to
explicitly account for variable feature complexity in cascade
learning, supporting weak learners of widely different com-
plexities. Second, CompACT seamlessly integrates hand-
crafted and CNN features in a unified cascaded detector.
This generalizes the object proposal architecture, enabling
the integration of CNN stages with stages of any other com-
plexity. Third, it is shown that many large and expensive
CNN models can be optimally embedded into the proposed
CompACT cascades, enabling a range of complexities and
accuracies. Finally, it is shown that the embedding of a
large CNN detector, the MS-CNN [5], enables CompACT
cascades to achieve accurate pedestrian detection rates on
Caltech [13] and KITTI [19], at fairly fast speeds. While
these contributions only address the design of cascaded
detectors by boosting, we hope that the ideas will inspire
subsequent research on explicit modeling of complexity into
the objective functions used to train neural networks end-to-
end.

2 RELATED WORK

Cascades have long been used to detect objects such as faces
[3], [49], [51], [52], pedestrians [11], [40], or cars [41]. Early
approaches used heuristics to find a cascade configuration
of good trade-off between accuracy and complexity [3], [49],
[51], [52]. More recently, there have been efforts to optimize
this trade-off [30], [40], [41], [59]. For example, [59] added
a complexity term to the RealBoost loss, and [30], [40], [41]
introduced the Lagrangian formulation we adopt. However,
these methods use a single feature family throughout the
cascade. The need for early cascades stages to be very
efficient restricts this to a simple feature, e.g. a decision
stump. For pedestrian detection, this is usually applied to
the integral channel features of [12]. These extend the Haar-
like features of [49] into a set of color and histogram-of-
gradients (HOG) channels. A computationally efficient ver-
sion of [49], denoted the aggregate channel features (ACF),
was introduced in [11].

More recently, [35] complemented ACF with local bi-
nary patterns (LBP) and covariance features, for better de-
tection accuracy. Several works proposed alternative fea-
ture channels, obtained by convolving different filters with
the original HOG+LUV channels [1], [32], [56], [57]. The
SquaresChnFtrs of [1] reduce the large number of features of
[12], [49] to 16 box-like filters of various sizes. [32] extended
the locally decorrelated features of [22] to ACF, learning four
5×5 PCA-like filters from each of the ACF channels. Instead
of empirical filter design, [56] exploited prior knowledge
about pedestrian shape to design informed filters. They
later found, however, that such filters are actually not
needed [57]. Instead, the number of filters appears to be the
most important variable: features as simple as checkerboard
patterns, or purely random filters, can achieve very good
performance, as long as there are enough of them. However,
these methods are relatively slow, since good performance
requires convolution with large numbers of filters [35], [57].

While deep convolutional classifiers achieve impressive
results on general object detection [21], e.g. on VOC, COCO
or ImageNet, initial attempts with deep learning did not
excel at pedestrian detection [2], [33], [43]. The difficulty of
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sliding window implementation of deep models motivated
the use of object proposal mechanisms [21], [24], [50] that
pre-select the most promising image patches. Early models,
such as the R-CNN [21] were fairly slow, but the introduc-
tion of the Fast-RCNN [20], allowing the computation of
CNN features once per image, increased detection speed by
an order of magnitude. Nevertheless, this model required
an independent bottom-up stage for proposal generation.
Later, the Faster-RCNN [38] integrated the generation of ob-
ject proposals and region-wise classification within a single
neural network, leading to a significant speedup.

Following these works, [27], [53], [55] presented good re-
sults for pedestrian detection. However, large CNN models
tend to be costly and consume large amounts of energy, due
to their GPU requirements. The massively parallel imple-
mentation required for speed makes difficult the optimal
allocation of computation to different image areas. This
makes it difficult to optimize the trade-offs between accu-
racy and speed, accuracy and energy consumption, accuracy
and cost, etc. For example, [29], [37] obtained significantly
higher speeds than those of the Faster-RCNN with a more
efficient one-shot detection architecture but at the cost of
substantially weaker detection rates. The implementation
of high accuracy GPU-based detectors with low energy
consumption or low-cost is mostly open at this point.

In this work, we define the optimal detector as that
of maximal detection accuracy under a complexity con-
straint. Under this definition, the two-stage (proposal plus
classification) cascade is not necessarily optimal. A more
general multi-stage cascade could, in principle, achieve a
better trade-off between detection accuracy and speed. This
motivated us to consider multi-stage cascades that 1) in-
clude deep learning stages and 2) seek the optimal trade-
off between accuracy and complexity. This is accomplished
with a generalization of the classic boosting framework for
cascade design, which complements the boosting loss with
a complexity penalty.

The addition of this complexity term also establishes an
explicit connection between complexity constrained detec-
tion and regularization. It is well known that AdaBoost can
overfit when either the number of weak learners or their
complexity are unchecked. In general, overfitting propensity
depends on the VC-dimension or Rademacher complexity
of the detector [42]. This has motivated the inclusion of
complexity measures, e.g. Rademacher complexity [8], into
the boosting loss. CompACT is similar in that it considers
complexity albeit computation, not Rademacher complexity.
Note, however, that both complexity measures are monoton-
ically increasing functions of decision tree depth. Our exper-
iments show that the complexity constraint in the proposed
CompACT can indeed improve resistance to overfitting.

3 COMPLEXITY-AWARE CASCADE

In this section we introduce the CompACT algorithm.

3.1 AdaBoost

A decision rule h(x) = sign[F (x)] of predictor F (x) maps
a feature vector x ∈ X to a class label y ∈ Y = {−1, 1}.

Boosting learns a strong decision rule by combining a set of
weak learners fk(x),

F (x) =
∑
k

fk(x), (1)

by functional gradient descent on a classification risk [17],
[31]. AdaBoost [16] uses the exponential loss ϕ(yF (x)) =
e−yF (x), minimizing the empirical risk

RE [F ] ≃
1

|St|
∑
i

e−yiF (xi), (2)

on a training set St = {(xi, yi)}. Boosting iterations com-
pute the functional derivative of (2) along the direction of
weak learner g(x) at the current predictor F (x),

< δRE [F ], g > =
d

dϵ
RE [F + ϵg]

∣∣
ϵ=0

=
1

|St|
∑
i

[ d
dϵ
e−yi(F (xi)+ϵg(xi))

]∣∣∣
ϵ=0

= − 1

|St|
∑
i

yiwig(xi), (3)

where wi = w(yi, xi) = e−yiF (xi). The predictor is updated
by selecting the steepest descent direction within a weak
learner pool G = {g1(x), · · · , gn(x)},

g∗(x) = argmax
g∈G

< −δRE [F ], g >

= argmax
g∈G

1

|St|
∑
i

yiwig(xi). (4)

The optimal step size for the update is

α∗ = argmin
α

RE [F + αg∗]. (5)

For binary g∗(x), this has a closed form solution

α∗ =
1

2
log

∑
i|yi=g∗(x) w

k
i∑

i|yi ̸=g∗(x) w
k
i

. (6)

Otherwise, the optimal step size is found by a line search.

3.2 Complexity-Aware Learning
Complexity-aware learning seeks the best trade-off between
classification accuracy and complexity. This is a constrained
optimization problem, where classification risk is mini-
mized under a bound on a complexity risk RC [F ],

F ∗(x) = argmin
F

RE [F ] s.t. RC [F ] < γ, (7)

which is solved by minimizing the Lagrangian

L[F ] = RE [F ] + ηRC [F ], (8)

where η is a Lagrange multiplier that only depends on γ. To
define a complexity risk, we note that (2) can be written as

RE [F ] ≃
1

|St|
∑
i

ϕ[ξ(yi, F (xi))], (9)

with ϕ(v) = e−v and ξ(y, F (x)) = yF (x). The function
ξ(·) is the margin of example x under predictor F (·) and
measures the confidence of the classification. Large positive
(negative) margins indicate that x is correctly (incorrectly)
classified with high confidence, and the margin is zero
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for examples on the boundary. The loss ϕ(·) is usually
monotonically decreasing, penalizing all examples with less
than a small positive margin. This forces the learning al-
gorithm to concentrate on these examples, producing as
few negative margins as possible. The exponential loss of
AdaBoost makes the penalty exponential on the confidence
of incorrectly classified examples.

In this work, we adopt a complexity risk of similar form

RC [F ] ≃
1

|St|
∑
i

τ [κ(yi, F (xi))], (10)

where κ[y, F (x)] measures the complexity of classifying
example x with F (·) and τ(·) is a non-negative complexity
loss. Drawing inspiration from the classification risk, we
measure complexity with the complexity margin

κ[y, F (x)] = yΩ(F (x)). (11)

While Ω(F (x)) can be any measure of complexity, in
this work we focus on computational complexity, setting
Ω(F (x)) to the number of operations required to evaluate
F (x). (11) assigns positive (negative) complexity to positive
(negative) examples, reflecting the fact that computation
spent on negative examples is “wasted” or “negative”
while that spent on positives is “justified” or “positive”.
While positives have to survive all cascade stages, negatives
should be rejected with little computation. The loss τ(v)
then determines the complexity-aware behavior of learning
algorithms. For example, a decreasing τ(v) for v < 0 penal-
izes negative examples of large complexity. This encourages
classifiers that reject negatives with as little computation as
possible. On the other hand, an increasing τ(v) for v > 0
penalizes positives of large complexity.

3.3 Embedded Cascade

A cascaded classifier is a sequence of classification stages
hi(x) = sgn[Fi(x) + Ti], where Ti is a threshold. A popular
architecture, which we adopt in this work, is the embedded
cascade, whose predictor has the embedded structure

Fk(x) = Fk−1(x) + fk(x) =
k∑

j=1

fj(x). (12)

Classification complexity is measured by the average per
stage complexity,

Ω(F (x)) =
1

m

m∑
k=1

rk(x)Ω(fk(x)), (13)

where, using u[·] to denote the Heaviside step function,

rk(x) =
k−1∏
j=1

u
[
Fj(x) + Tj

]
, (14)

is an indicator of examples that survive all stages prior to
k, i.e. rk(x) = 1 if Fi(x) + Ti > 0,∀i < k, and rk(x) =
0 otherwise. Since the average complexity is bounded by
the largest weak learner complexity, this leads to a more
balanced Lagrangian in (8) than the total complexity.

3.4 Cascade Boosting
The minimization of (8) requires the functional derivative of
the Lagrangian along the direction of weak learner g(x) at
the current predictor F (x),

< δL[F ], g >=< δRE [F ], g > +η < δRC [F ], g >, (15)

where < δRE [F ], g > is as in (3). To compute the derivative
of the complexity risk we note that

Ω(F (x)+ ϵg(x)) =

{
Ω(F (x)) if ϵ = 0
Ω(F (x) + ϵg(x)) otherwise. (16)

Defining u(ϵ) as u(ϵ) = 0 for ϵ = 0 and u(ϵ) = 1 otherwise,

Ω(F (x) + ϵg(x)) =

= Ω(F (x)) + u(ϵ)
[
Ω(F (x) + ϵg(x))− Ω(F (x))

]
= Ω(F (x))[1− u(ϵ)] + u(ϵ)Ω(F (x) + ϵg(x))

= Ω(F (x))[1− u(ϵ)]

+
u(ϵ)

m+ 1

[
m∑

k=1

rk(x)Ω(fk(x)) + rm+1(x)Ω(ϵg(x))

]

= Ω(F (x))

[
1− u(ϵ) +

m

m+ 1
u(ϵ)

]
+

u(ϵ)

m+ 1
rm+1(x)Ω(ϵg(x))

= Ω(F (x))[1− u(ϵ)ζm] + u(ϵ)
rm+1(x)

m+ 1
Ω(ϵg(x)),

where ζm = 1 − m
m+1 and we have used (13). Finally,

since ϵg(x) is simply a rescaling of g(x), it is assumed that
Ω(ϵg(x)) ≈ Ω(g(x)), from which the expression above can
be approximated by

Ω(F (x)+ϵg(x)) = Ω(F (x))[1−u(ϵ)ζm]+u(ϵ)
rm+1(x)

m+ 1
Ω(g(x)).

(17)
Furthermore, since u(ϵ) is not differentiable, it is approxi-
mated by σ(ϵ) ≈ u(ϵ), where σ(ϵ) is a differentiable function
with σ(0) = 0. Under these approximations,

< δRC [F ], g > (18)

=
1

|St|
∑
i

[
d

dϵ
τ
[
yiΩ

(
F (xi) + ϵg(xi)

)]]∣∣∣∣
ϵ=0

=
1

|St|
∑
i

yiτ
′ [yiΩ(F (xi))]

[
d

dϵ
Ω
(
F (xi) + ϵg(xi)

)]∣∣∣∣
ϵ=0

=− 1

|St|
∑
i

yiψ(yi, xi)

[
rm+1(xi)

m+ 1
Ω(g(xi))− ζmΩ(F (xi))

]
,

where
ψ(yi, xi) = −τ ′ [yiΩ(F (xi))]σ′(0). (19)

Note that the derivative only depends on σ′(0), other details
of σ(ϵ) make no difference. Each boosting iteration updates
F (x) with a step along the steepest descent direction of (15)
within the weak learner learner pool G,

g∗(x) = argmax
g∈G

< −δL[F ], g > . (20)

Combining (3), (15), and (18) and denoting ri = rm+1(xi),
ωi = ω(yi, xi), gi = g(xi), and ψi = ψ(yi, xi), this is the
direction that maximizes

D[g] =
1

|St|
∑
i

yi

[
ωigi + η

riψiΩ(gi)

m+ 1

]
, (21)
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where we have disregarded the term ζmΩ(F (xi)) of (18),
because it does not depend on g and plays no role in the
optimization. The optimal step size for the update is

α∗ = argmin
α

L[F + αg∗], (22)

The cascade predictor is finally updated with

Fnew(x) = F (x) + α∗g∗(x). (23)

Note that, from (19), σ′(0) is a constant that rescales all ψi

equally. Hence, in (21), it can be absorbed into η. We thus
assume, without loss of generality, that σ′(0) = 1. This
boosting algorithm is denoted the complexity aware cascade
training (CompACT) boosting algorithm.

3.5 Properties
CompACT has a number of interesting properties. First,
the contribution of each training example to the complexity
term in (21) is multiplied by ri. Hence, only examples that
survive the current cascade F contribute to the complexity
term. We refer to the xi such that ri = 1 as active examples.
Note that, given the set of active examples

Sa(F ) = {(xi, yi) ∈ St|ri = 1}, (24)

associated with F , (21) can be replaced by

D[g] =
1

|St|

∑
i

yiωigi +
∑

i|ri=1

yi
ηψiΩ(gi)

m+ 1

 . (25)

This complies with the intuition that examples which do not
reach stage m + 1 during the cascade operation should not
affect the complexity term for that stage.

Second, most implementations of cascaded classifiers
use weak learners of example-independent complexity, i.e.
Ω(g(xi)) = Ωg,∀i. While this does not hold for the cascade
in general (different examples can be rejected at different
stages), it holds for the examples in Sa, i.e. Ω(F (xi)) =
ΩF ,∀xi ∈ Sa. In this case, the complexity weights of (19)
only depend on the label yi. Defining ψ+ = −τ ′[ΩF ]
(ψ− = −τ ′[−ΩF ]) as the value of ψi for positive (nega-
tive) examples, and π+

F (π−
F ) as the percentage of positive

(negative) active examples, (21) reduces to

D[g] =
1

|St|

∑
i

yiωigi +
η

m+ 1
Ωg

∑
i|ri=1

yiψi

 (26)

=
1

|St|
∑
i

yiωig(xi)−
η

m+ 1
Ωg

|Sa|
|St|

ξF , (27)

with ξF = π−
F ψ

−
F −π+

Fψ
+
F . Since |Sa| decreases with cascade

length, the rescaling of η by |Sa|
|St| gradually weakens the

complexity constraint as the cascade grows. While in the
early iterations there is pressure to select weak learners
of reduced complexity, this pressure reduces as iterations
progress. Gradually, complex weak learners are penalized
less and the algorithm asymptotically reduces to a cascaded
version of AdaBoost. This makes intuitive sense, since the
latter cascade stages process a much smaller percentage of
the examples than the earlier ones and have much less im-
pact on the overall complexity. On the other hand, since the
surviving examples are the most difficult to classify, accurate

1 1

1 1(x, )vf q£

1-

1

1v

1

2v
2

2v

1 1

1 1(x, )vf q>

1 1

2 2(x, )vf q£ 1 1

2 2(x, )vf q> 2 2

2 2(x, )vf q£ 2 2

2 2(x, )vf q>

Fig. 1: Decision tree of depth 2. Circles represent classifier nodes,
squares terminal nodes. ϕ(x, v) is the feature of x used at node v, θ
a threshold.

classification requires weak learner accuracy to increase
with cascade length. This usually (but not always) implies
that weak learner complexity increases as well because
powerful features usually require heavy computation. By
pushing the complexity to the later stages, the algorithm can
learn cascades that are both accurate and computationally
efficient. This effect is reinforced by the fact that 1/(m + 1)
also decreases with cascade length.

Third, for homogeneous cascades, where every weak
learner g in G has the same complexity, the second term
of (27) is constant and has no impact on the optimization. In
this case, (27) reduces to (3) and compACT boosting reduces
to AdaBoost. Since this is the setting used by most previous
cascade design algorithms [3], [40], [49], [52], compACT
boosting can be seen as a generalization of these procedures.
More generally, the weak learner pool is frequently het-
erogenous but of the form G = {G1,G2, · · · ,GM}, where
Gm is a homogeneous weak learner subset and M a number
of heterogeneous weak learner classes. In this case, Ωg is
constant within each Gm, only varying across the weak
learner subsets, i.e. Ωg = ΩGm ,∀g ∈ Gm. Hence, the second
term of (27) becomes a penalty on the weak learner subsets
Gm. While different subsets are weighted according to their
complexity, all weak learners within the same subset receive
the same penalty. In this way, compACT boosting penalizes
weak learner families of larger complexity but behaves like
AdaBoost within each family.

3.6 Complexity Loss

The choice of complexity loss τ(v) determines the weight
ξF = π−

F ψ
−
F − π+

Fψ
+
F in (27). In our experience, the details

of the loss function do not have a major impact on the per-
formance of the learned cascade. For example, because the
percentage of positive training examples is usually small,
the behavior of τ(v) for v > 0 is not critical. For negative
examples, the loss should be monotonically decreasing on v,
but we have not seen great differences between, say, linear
and exponential decay. For simplicity, we thus adopt the loss

τ(v) = max{0,−v}. (28)

This is similar to the SVM hinge loss [9],

τ(v) = max{0, 1− v} (29)

but does not enforce a penalty on positive examples of low
complexity. For complexity, it matters most to distinguish
between positives and negatives, penalizing positives of low
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Algorithm 1 Complexity-Restricted Tree Learning
Input:
Feature pool ϕ = {ϕ1, ϕ2, · · · , ϕM}; training samples St =
{(xi, yi)}.
Output:
The optimal decision tree g∗.
for k = 1 : M do

Build the optimal homogenous decision tree gk, using
features from ϕk only and (4).

end for
Select the decision tree g∗ from {gk} that maximizes (27).

complexity is not important. Instead, this loss encourages
CompACT to focus on the fast rejection of negatives. Under
it, ψ−

F = 1, ψ+
F = 0 and ξF = π−

F . Note that this makes the
weight |Sa|

|St| ξF of (27) equal to the ratio between the negative
examples that are active and the total number of examples.
This decreases as the cascade grows.

3.7 Weak Learners
CompACT supports the design of cascades with many types
of weak learners. In this work, we follow the predominant
trend in the literature and use binary decision trees.

3.7.1 Decision trees
As shown in Fig. 1, binary decision trees have two node
types: classifier and terminal. Node v implements a classifier
g(x, v) by computing a feature ϕ(x, v) of sample x and com-
paring it to a threshold θ(v). The sample is then forwarded
to one of the two children of the node, according to the
results of this comparison. In this way, each sample follows
a path from the root to a terminal node, transversing a
single classifier node at each depth level. No classification or
feature computation is performed in terminal nodes. Hence,
in what follows, tree depth refers to classifier nodes only.

A binary decision tree g of depth L with classifier nodes
{v11 , · · · , vil , · · · , v

nL

L }, where nl = 2l−1 is the number of
nodes at depth l, has expected computation cost

Ω(g) =
L∑

l=1

nl∑
i=1

pilc
i
l, (30)

where pil = p(vil |x) is the probability that node vil is tra-
versed by sample x and cil is the feature computation cost of
node vil . The probabilities pil have some properties that de-
rive from the tree structure, e.g. 1) if vkl is the parent of vjl+1

then p(vjl+1|x) = p(vjl+1|x, vkl )p(vkl |x); 2)
∑nl

i=1 p
i
l = 1 for

any depth l. Property 1) implies that p(vjl+1|x) ≤ p(vkl |x),
i.e. the probabilities decrease with depth, and property 2)
guarantees that the root node is traversed with probability
p(v11 |x) = 1 for all x.

In this work, the feature pool ϕ used to build decision
trees is composed of M classes, ϕ = {ϕ1, ϕ2, · · · , ϕM},
where all features of class k have computational cost Ck.
It follows that cil ∈ {Ck}Mk=1. Two strategies for learning
decision trees, which are discussed next, were considered.

3.7.2 Complexity-restricted Tree
Under the first strategy, all decision trees use homogeneous
features. At each boosting iteration, a decision tree gk is
built from feature sub-pool ϕk. The learning algorithm then

Algorithm 2 Complexity-Sensitive Tree Learning
Input:
Feature pool ϕ = {ϕ1, ϕ2, · · · , ϕM}; training samples St =
{(xi, yi)}; and tree depth L.
Output:
The optimal decision tree g∗ = {g11 , · · · , gnL

L }.
for each classifier node v do

1. Collect the training samples Sv that fall into node v, and
compute the probability pv that node v is traversed by a
sample.
2. Find the node classifier gv , by selecting the combination
of feature from ϕ and threshold θ(v) that maximizes (32).

end for

chooses the best of the M trees gk. Under this strategy, (30)
reduces to

Ω(gk) =
L∑

l=1

nl∑
i=1

pilCk = LCk, (31)

where we have used property 2) above. Hence, given k,
Ω(gk) is a constant and the optimal weak learner of (20) is
identical to that of (4), i.e. that chosen by AdaBoost. Hence,
the learning of each cascade stage can be divided into two
steps: 1) learn M homogeneous decision trees, by using the
AdaBoost rule of (4) to find the optimal tree gk for each
each feature pool ϕk, and 2) select the homogeneous tree
g∗ ∈ {gk} that maximizes the complexity aware objective of
(27). The procedure is summarized in Algorithm 1.

3.7.3 Complexity-sensitive Tree
The second strategy optimizes the trade-off between com-
plexity and accuracy even within each decision tree. Since
global tree optimization is difficult, we use the popular local
recursive optimization, where nodes are optimized sequen-
tially. Consider (27) and the active sample |Sa| arriving at
current stage. Using Sv to denote the samples that reach
node v, the empirical probabilities pv are estimated with
pv = |Sv|

|Sa| . The binary classifier g(x, v) implemented at node
v is then learned with the following variant of (27)

D[gv] =
1

|Sv|
∑
i∈Sv

yiωigv(xi)−
η

m+ 1

|Sa|
|St|

pvξFΩgv , (32)

where we use gv to denote g(x, v). The optimization proce-
dure is described in Algorithm 2. Note that gv can choose
a feature from any of the feature pools ϕk. Hence, the
tree is usually heterogenous and has two main properties.
First, because the complexity penalty decreases with node
probability, less visited nodes tend to use more complex
features. Second, from property 1) above, deeper nodes
have smaller probabilities than earlier ones, and feature
complexity increases towards the tree leaves. Hence, early
and popular nodes tend to use low complexity features,
while features of higher complexity tend to be chosen for
late or less popular nodes.

3.8 Bootstrapping and Thresholds

Bootstrapping is critical for effective object detection [11],
[15]. A popular strategy is to collect hard negatives for an
immature detector and use them to train a less immature
detector. This is repeated for several rounds, until the de-
tector is mature enough [2], [11], [32], [35], [57]. Usually,
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Algorithm 3 Embedded Bootstrapping
Input:
Training images set I; numbers {N1, · · · , NK} of weak learn-
ers at different stages, where M =

∑K
k=1 Nk.

Initialization:
Empty detector F = {}; initial training set S0.
Output:
Final detector F = {F1, · · · ,FK}.
for k = 1 : K do

1. Use Sk−1 to learn a detector Fk of Nk weak learners.
2. Embed Fk in detector F = F ∪ Fk.
3. Run F to collect a new hard training set Sk.

end for

performance saturates after 4 to 5 bootstrapping rounds. A
problem of this strategy is that the final training samples
are not representative of the sample distribution of natural
images. In fact, in the final bootstrapping round, most
negatives are similar to the positives. Hence, there is no
guarantee that the final detector will correctly classify the
samples rejected by previous immature detectors.

To circumvent this, we use the bootstrapping strategy
of Algorithm 3, which is similar to the methods of [18],
[46]. The final detector is not the one learned in the fi-
nal bootstrapping round. Instead, the detector learned in
current round is embedded into the detector learned from
all previous rounds, using (12). In our experiments, this
strategy is more resistant to over-fitting than the classical
one, sometimes outperforming it by a large margin.

Another important factor for cascade performance is the
threshold used to reject negative examples. While thresholds
can be learned [3], this increases the complexity of learn-
ing the complexity-aware cascade stages. In this work, the
thresholds are selected as in [11], using a simplified version
of the soft cascade of [3]. This consists of setting, in (14),
T1 = 1 and Tj+1 − Tj = ∆, ∀j > 1, where ∆ is usually a
small number, e.g. 0.005.

4 PEDESTRIAN DETECTOR DESIGN

In this section, we discuss various details of the proposed
pedestrian detector.

4.1 Heterogeneous Features
CompACT boosting seeks the optimal trade-off between
accuracy and complexity, at each cascade stage. This is most
effective when the feature pool contains features of various
complexities. Our implementation draws such features from
two main sources, the handcrafted aggregate feature chan-
nels (ACF) of [11] and a CNN feature set. Different filter
sizes, computational mechanisms, platforms, etc. contribute
to the diversity of feature complexities. A sample of the
responses of some of these features to a pedestrian image is
shown in Fig. 2. Note the diversity of details that the features
highlight. This is unlike most previous works in the cascade
literature, where most detectors use a single feature family.

In the literature, it is common to pre-compute a large
number of feature responses at all image locations, be-
fore detection [32], [35], [57]. This, however, has unfeasible
complexity for large feature pools (e.g. the 200,000∼500,000
features extracted per patch in [35], [57]) or when features
are computationally intensive (e.g. the CNN features of [26],
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Fig. 2: Sample of the feature channels generated on a pedestrian image.

Fig. 3: Eight 2×2 checkerboard-like filters used in this work. Red
(Green) is used to represent value +1 (-1).

[45]). In these cases, it is neither tractable nor necessary
to pre-compute all features at all locations. For example,
a cascade of 2048 decision trees of depth 2, evaluates at
most 4096 features per patch. Since the cascade rejects most
candidate patches after a few stages, the most intensive
features (e.g. CNN) are unlikely to be needed at most image
locations. Hence, while pre-computation is useful for low-
complexity features, complex features should be evaluated
as necessary. We refer to the former as pre-computed features
and the latter as computed just-in-time (JIT).

4.1.1 Pre-computed Features
Our pre-computed feature set consists of ACF [11],
mostly due to its computational efficiency. Following [11],
we extract 10 LUV+HOG channels. In total, there are
16×8×10=1,280 ACF features per pedestrian patch.

4.1.2 Just-in-time Features
The JIT pool contains several feature subsets.

SS: The self-similarity (SS) features of [44] capture the
difference between local patches and have achieved good
performance on edge detection tasks [14], [28]. Following
[14], [28], we compute SS features on a 12×6 grid of the

16×8 ACF patch. This results in
(
72
2

)
× 10 = 25, 560 SS

features per pedestrian patch.

CB: Checkerboard features (CB) are obtained by convolving
the ACF channels with a set of checkerboard filters. [57]
has shown that a simple set of such features could achieve
very good performance for pedestrian detection. Based on
their observation that the number of features determines
performance (rather than feature type), we adopt the set of
8 simple 2×2 checkerboard filters of Fig. 3. In total, there are
16×8×80=10,240 CB features per pedestrian patch.

LDA: Locally decorrelated HOG features, computed with
linear discriminant analysis (LDA), have shown some su-
periority for object detection over HOG features [22]. [32]
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Fig. 4: CNN architecture used to extract small CNN features.

showed that the computation of these features on ACF
channels leads to a big improvement over ACF. We adopt
this feature family, with filter size of 3×3. In total, there are
16×8×40=5,120 LDA features per pedestrian patch.

ACFCNN: SS, CB and LDA features are responses of simple
hand-crafted filters to ACF features. A set of filters of
higher complexity is also learned with a shallow CNN. This
has the ACF feature channels as input and consists of a
convolutional and a fully connected (fc) layer. Since ACF
channels vary quite a bit in magnitude, they are passed
through a batch normalization [25] layer before being fed
to the CNN. The convolutional layer contains 32 filters of
size 1×3×10 and 3×1×10, where 10 is the number of ACF
channels. These filters have the same complexity and are
denoted as ACFCNN. Although GPUs are used to train
ACFCNN parameters, they are relatively simple filters and
we use a CPU for their computation. In total, there are
16×8×64=8,192 ACFCNN features per pedestrian patch.

Small CNN: Beyond operators defined over ACF channels,
we consider a set of CNN features extracted directly from
the image to classify. The CNN has eight convolutional lay-
ers and one fc layer, whose details are given in Fig. 4. It was
originally trained on 64×64 ImageNet images [39] and then
fine tuned on a pedestrian dataset of 64×32 images. For fea-
ture extraction, we use the output of the 5th and 7th convo-
lutional layers. Similarly to ACF, these can be seen as CNN
feature channels and are denoted as CONV5 and CONV7,
respectively. Inspired by the good performance and simplic-
ity of the checkerboard features on ACF, we also compute
them on the CONV5 feature channels. These are denoted
CONV5CB features. Since CONV5 and CONV7 features are
strong and can drive boosting towards over-fitting (espe-
cially CONV7), we only retain the 1/2 channels of CONV5
and the 1/4 channels of CONV7 that are more frequently
used during learning. After the cascade is trained, we prune
the unfrequently used channels and retrain it. Overall,
there are 16×8×64=8,192 CONV5 features, 8×4×64=2,048
CONV7 features and 16×8×512=65,536 CONV5CB features
per pedestrian patch.

4.2 Feature Complexity

Different facets of feature complexity, such as number of
computations, computation cost, energy consumption, or
speed, are of importance depending on the application. For
features computed on CPUs, these variables are linearly
related, and any of them can be used as a general measure
of complexity. A reasonable choice is the number of floating-
point operations (FLOPs) required by feature computation.
However, complexity can depend on the implementation.
For example, a Haar feature has complexity linear in the size
of the image region it covers, but this leads to substantial re-
dundant computation when overlapping features are used.
The problem can be avoided by using the integral image
of [49], which enables constant complexity (four integral

TABLE 1: Feature complexity and processing unit
ACF SS CB LDA ACFCNN CONV5 CONV7 CONV5CB

FLOPs 1 2 4 9 30 5.84×107 8.67×107 5.84×107+4
Unit CPU CPU CPU CPU CPU GPU GPU GPU+CPU

image operations) for all features. This type of problem is
much more complex for CNN features computed on GPUs.
In this case, speed is optimized when features are computed
in parallel. It is frequently faster to compute convolutions
over the entire image, even if this computation is not needed
in some areas, than to adapt the computation to the de-
tection needs. This is, however, very inefficient in terms of
energy consumption. Hence, for GPU-based CNN features,
the two facets of complexity are not linearly related. The
problem could be solved by shutting down individual CNN
units, depending on the spatial location of their receptive
field, but this is usually not supported by deep learning
libraries. Hence, it is difficult to define a universal measure
of complexity, of interest for all applications. This is even
more complex for mixed CPU/GPU implementations, since
the cost and energy consumed per FLOP are very differ-
ent for the CPU and GPU architectures. In this case, the
complexity measure can depend on the particular hardware
implementation of the detector. We avoid this problem by
introducing a generic but approximate measure of com-
putational complexity, which relies on FLOPs to measure
the complexity of CPU features and introduces the notion
of “trigger complexity” for those computed on GPUs. The
FLOPS and processing unit required by the various features
used in this work are shown in Table 1.

4.2.1 ACF-based Feature Complexity

ACF features underlie SS, CB, LDA and ACFCNN, and are
pre-computed before detection. The pre-computation cost,
which occurs before cascade evaluation, can be ignored
reducing complexity to a memory access. We assign to this
a complexity of 1. SS, CB LDA and ACFCNN features are
JIT features. Beyond ACF, they require a number of FLOPs
proportional to their filter sizes. As shown in Table 1, their
complexities are 2, 4, 9 and 30 respectively.

4.2.2 Trigger Complexity

The complexities of CNN and hand-crafted features are of
a different nature. While CNN features are computed JIT,
current libraries makes it inefficient to compute features
individually. If CNN features are needed to classify an
image region, it is significantly more efficient to evaluate
all layers over the entire region than only the responses
of the layers needed per sub-region. This makes it difficult
to assign a complexity per feature. Instead, we rely on the
concept of a trigger complexity Ωcnn.

When (27) is evaluated for a previously unused CNN
feature, Ωg = Ωcnn. Similarly to ACF, once the feature
is computed its complexity is set to Ωg = 1. Different
CNN features have different trigger complexities, which
reflects their requirements in GPU FLOPS. In our imple-
mentation, CONV5 and CONV7 have trigger complexities
of {α5Ωcnn, α7Ωcnn}, where α5 : α7 = 1 : 1.48. This is
summarized in Table 1. When CNN architectures are inde-
pendent, the same holds for their trigger complexities. How-
ever, CNN features are frequently dependent, e.g. CONV5
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Fig. 5: MS-CNN proposal sub-network. Bold cubes are the network
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coordinates, respectively.

and CONV7, which are features from the same network,
with CONV7 requiring the computation of CONV5. To
account for this, once CONV5 is computed trigger complex-
ities become {0, (α7 − α5)Ωcnn} and once CONV7 is com-
puted they become {0, 0}. Once these features are triggered,
complexity becomes {1, 1} for both CONV5 and CONV7.
CONV5CB features, obtained by checkerboard filtering the
responses of CONV5, have trigger complexity equal to
CONV5. Their after-trigger complexity is 4, the number of
FLOPs required by checkerboard filters.

4.3 Embedding Large CNN Models
Large CNNs [23], [26], [45] are popular in computer vision.
While, theoretically, they could be used in any cascade
stage, this makes the iterative boosting optimization too
computationally intensive. It is practical, however, to use a
large CNN as the final cascade stage. This can, in principle,
be done for any CNN detector in the literature. We next
discuss the embedding of a few popular methods.

4.3.1 R-CNN
The R-CNN detector [21] applies a CNN to object proposals
produced by an independent algorithm. It is trained with
a sequential process of CNN fine-tuning, feature saving,
SVM classifier training and bounding box regression train-
ing. This requires substantial human engineering, time and
memory, due to the discrepancy between CNN classification
and SVM detection scores. Some components, e.g. feature
saving and SVM training, can be avoided by using CNN
scores as detection scores. Due to the low computational
efficiency of the R-CNN [21], embedding it in a CompACT
cascade, which is already very discriminant and produces
few detection candidates, can be very beneficial.

4.3.2 Fast-RCNN
The Fast-RCNN addresses many limitations of the R-CNN
by sharing computation across proposals at different loca-
tions and scales. It requires a single forward image pass to
produce all detections. This makes it much more efficient
than the R-CNN. The original Fast-RCNN [20] was trained
with third-party generic object proposals [48], which is not
efficient nor effective for pedestrian detection. Better results
could, in principle, be obtained by training a Faster-RCNN
model [38] to detect pedestrians first, and then replace the
RPN proposals by CompACT cascade proposals. The latter
can, in this case, be seen as a strong proposal mechanism for
the Fast-RCNN. To test this premise, we used Fast-RCNN
detectors based on AlexNet, VGG-Net and ResNet-101.
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4.3.3 MS-CNN

Despite the good Faster-RCNN results for general object
detection, its pedestrian detection performance can be weak.
This is because pedestrians can have wildly varying sizes,
and the Faster-RCCN proposal network uses filters of fixed
receptive field size. To overcome this inconsistency, we
recently introduced a multi-scale extension of the Faster-
CNN [38], denoted MS-CNN [5]. This consists of an object
proposal sub-network and a detection sub-network, with
the architectures of Fig. 5 and 6. By adding outputs at
multiple layers of the object proposal network, each layer is
encouraged to focus on objects within a certain scale range
(See Fig. 5). This set of complimentary proposal generators
is then combined into a strong multi-scale generator.

The MS-CNN is based on the VGG-Net [45]. Like the
Faster-RCNN, it uses an RoI pooling layer. However, instead
of operating on “conv4-3” feature maps, this is applied after
a deconvolutional layer, which upsamples the feature maps
twice for higher resolution. In addition to the pooling from
the exact object region (green cube in Fig. 6), RoI pooling
also operates on a context region (blue cube in Fig. 6) 1.5
times larger. An extra convolutional layer is used after this
contextual RoI pooling, to reduce the number of parameters,
and compress redundant context and object information.
The proposal and detection sub-networks are trained jointly.
To use the MS-CNN with CompACT, the proposal genera-
tion of Fig. 5 is ignored. Only the detection network of Fig.
6 is embedded in the CompACT cascade. This is similar to
the embedding of the Fast-RCCN (of VGG-Net), but uses
a more accurate pedestrian detector. It could thus enable
better trade-offs between accuracy and complexity.

4.3.4 Embedding Mechanisms

The simplest way to embed a large CNN in a CompACT
cascade is the “Proposal” mechanism of the R-CNN [21].
The CompACT cascade generates proposals, which are fed
to the CNN. The final detection scores are produced by
the CNN alone. This strategy assumes that the proposal
detector is much less discriminant than the large CNN.
This is frequently not true for CompACT cascades which,
at least for pedestrian detection, can even be stronger than
the large CNN. To address this, we propose an “Embedded”
mechanism, where the large CNN acts as the final weak
learner g of (23). Note that this has no loss of optimality, if
α is learned with (22). While avoiding the computationally
intensive fine-tuning of the CNN to the cascade proposals, it
guarantees that the cascade is still optimal in an end-to-end
manner. The CNN is simply a descent direction of (20) that
is unavailable to prior stages. In summary, “Embedding”
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differs from the “Proposal” mechanism in that 1) not only
the bounding boxes but also the confidence scores of the
cascade are forwarded to the deep CNN, and 2) the combi-
nation of the proposal mechanism (cascade) and deep CNN
is optimal under the well defined risk of (8).

It should be noted that the stride (step between window
evaluations) of CompACT is usually small, e.g. 4 pixels,
while that of large CNN feature maps is relatively large
and dependent on the network architecture, e.g. 16 pixels
for the CONV5 features of VGG-Net. However, this is not
a problem when the R-CNN or Fast-RCNN are embedded
in the CompACT cascade, because the networks operate
on object proposals. It suffices to feed the proposals to the
network by image warping (R-CNN) or RoI pooling (Fast-
RCNN). Another potential problem is that, despite its small
stride, the cascade is not always strong enough to guarantee
good localization, sometimes scoring the ground-truth win-
dow lower than neighboring windows. This, however, is
not a problem for Fast-RCNN detectors, which can recover
from poor proposal localization by relying on bounding box
regression [20], [38]. Since the latter has a trivial computa-
tional cost, it is always used when either the Fast-RCNN or
MS-CNN are embedded in a CompACT cascade.

It remains to decide what CompACT proposals are for-
warded to the CNN. As is common in the literature, when
the cascade is used by itself, its output is post-processed
with non-maximum suppression (NMS). Since there are
frequently many overlapping proposals, this drastically re-
duces the number of deep CNN evaluations, the costliest
stage from a computational point of view. On the other
hand, it is sub-optimal to insert the NMS operation between
the two stages from a detection point of view. We study the
impact of embeddings both with and without NMS on the
detection accuracy/complexity in the experimental section.

5 EXPERIMENTS

In this section, we discuss various experiments performed
to evaluate CompACT pedestrian detection cascades, using
the Caltech [13] and KITTI [19] datasets.

5.1 Experimental Setting

We started by performing various ablation studies on Cal-
tech, all using cascades of 2048 decision trees of depth
of 2. These were learned with 7 bootstrapping rounds,
using {32, 96, 128, 256, 512, 512, 512} decision trees. The
training and testing sets were as in [11]. A set of final
experiments was then conducted using cascades of 4096
decision trees of depth of 5 and 9 bootstrapping rounds
({32, 96, 128, 256, 512, 768, 768, 768, 768} trees). These were
performed on both Caltech and KITTI (a decision tree depth
of 4 was used in KITTI, due to its much smaller number
of pedestrian instances). The pedestrian template size was
64×32 including a contextual border region of 14×12, as
in [11]. On Caltech, we used the training set of [32], on
KITTI we used the standard training set. The standard
evaluation metrics were used on each dataset: MR (log-
average miss-rate) on Caltech, and mAP (mean average
precision) on KITTI. Since the minimum pedestrian height
on KITTI is half of that of Caltech (25 pixels), the original test
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Fig. 7: Cascade accuracy v.s. complexity for different features.

images were upsampled by 2. The detected bounding boxes
(minimum height of 50) were then downsampled by 2. All
experiments were run on a single CPU core (2.10GHz) of an
Intel Xeon E5-2620 server with 64GB of RAM. An NVIDIA
Tesla K40M GPU was used for CNN computations, with the
remaining computations performed on CPU.

5.2 Homogeneous Cascade Comparison

We started with homogeneous cascades of a single feature
family, the predominant architecture in the literature. In
this case, the complexity penalty of (27) is equal for all
weak learners, and CompACT reduces to AdaBoost. Fig.
7 compares homogeneous cascades based on ACF, SS, CB,
LDA, ACFCNN, CONV5, CONV7 and CONV5CB. Note the
improved performance of our ACF cascade implementation
over [11], due to the bootstrapping strategy of Section 3.8.

Clearly, SS outperforms the other ACF-based features
(ACF, CB, LDA, ACFCNN), achieving higher accuracy and
speed. CB and LDA are more discriminant than ACF, but
more complex. ACFCNN is slightly more accurate than CB,
but its heavy features produce the slowest ACF cascade. The
cost/benefits of CNN features are shown on the lower table.
CONV5 has higher accuracy than all ACF-based features
but five times the complexity. CONV7 has much worse
detection performance than CONV5. We believe this is due
to a coarser sliding window stride, since (see Fig. 4) CONV7
is downsampled twice more than CONV5. CONV5CB has
the best detection, but only a marginal gain over CONV5
and four times the computation. Fig. 7 also shows that
the spectrum of feature accuracies v.s. complexities is quite
broad. This enables CompACT to select features of optimal
accuracy vs complexity trade-off at each cascade stage.

5.3 CompACT Cascade Configuration

To test the ability of compACT to trade-off accuracy for com-
plexity, we started by considering cascades of complexity-
restricted trees (Section 3.7.2). Fig. 8 illustrates the configura-
tion of cascades learned with different η in (8), showing the
feature type selected every fifth stage. Consider the case of
η = 500. The cheapest features (ACF) were the only selected
for the first 200 stages, and rarely used after stage 500. This
suggests that ACF features are very efficient but not very
discriminant. A better trade-off between the two goals is
achieved by SS features, which were selected throughout
the training process. Note that SS features are competitive
even for the later cascade stages, suggesting that they can
be very discriminant in spite of their simplicity. Similarly,
CB features were selected across a large range of cascade
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Fig. 8: Stage configuration learned with different trade-off coefficient η. Only one in five stages is shown.
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η MR time (s)
64 19.45 0.51
125 19.54 0.44
250 18.87 0.34
500 18.29 0.28
1000 23.21 0.24
2000 33.65 0.11
4000 35.13 0.11
8000 36.52 0.11

Fig. 9: Accuracy v.s. complexity for different trade-off coefficients η.

stages. This is unlike LDA and ACFCNN, whose rare selec-
tion suggests a weak discrimination vs. complexity trade-
off. More surprisingly, CONV5 features were also rarely
selected, with CONV7 and CONV5CB dominating the late
stages. This suggests that CONV7 and CONV5CB are more
discriminant. Recall that, while CONV5 is more efficient in
Table 1, CompACT boosting weighs complexity less heavily
than discrimination in the late stages.

Fig. 8 also shows that the optimal cascade configuration
depends strongly on the Lagrange multiplier η that controls
the trade-off between accuracy and complexity. Recall, from
(7)-(8), that η has an inverse relationship with the complex-
ity bound γ. Hence, a smaller η (larger γ) should produce
a slower and more accurate cascade, and vice versa. This
is supported by Fig. 8, where large η leads to a cascade
composed exclusively of low complexity features, while a
small η allows the use of more complex features and the
use of those features earlier on in the cascade. The overall
trade-off between accuracy and complexity is shown in
Fig. 9, which compares cascades learned with different η.
Small η, which as shown in Fig. 8 induce CompACT to
select expensive CNN features in the early stages, produce
slower but more accurate cascades. Larger η, which prevent
the selection of expensive features, produce faster but less
accurate detectors. In the limit of η → ∞ only the cheapest
features are chosen throughout the cascade, and CompACT
reduces to AdaBoost on the ACF feature pool. This is the
method of [11].

Fig. 9 shows that between the two extremes of η, cascade
speeds vary from about 2 to about 10 fps. Interestingly,
accuracy plateaus as speed decreases. Note that accuracy
does not improve as η decreases beyond η = 500, even
though speed continues to decrease. Since the knee of the
curve corresponds to the lightest cascade with the best
accuracy on this dataset, this is the cascade of optimal trade-
off between accuracy and complexity. The fact that cascades
with heavier features have weaker detection rate suggests
some over-fitting and, as discussed in Section 2, that the
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Fig. 10: Stage configuration for “Boosting” and “Manual” cascades.

complexity penalty acts as a regularizer. In these experi-
ments the optimal trade-off was achieved with η = 500.

One sensible question is whether CNN features would
suffice to implement all cascades. After all, ACF features
perform convolutional operations and a well trained CNN
model should be able to learn them. Fig. 8 suggests this
is not the case. This is likely because ACF features were de-
signed with the explicit purpose of computational efficiency.
Although they cannot guarantee high accuracy, they achieve
a strong trade-off between accuracy and run-time. Note that,
in Fig. 8, they are always chosen to implement the early
cascade stages. On the other hand, CNN features are never
chosen for cascades that emphasize computational efficiency
(large η). While the CNN could, in principle, learn the ACF
features, this would require 1) a CNN learning algorithm
that somehow penalized feature complexity, which we are
not aware of, and 2) probably some form of hand-coding,
through specification of the architecture of early CNN lay-
ers.

5.4 Benefits of optimal accuracy/complexity trade-off
We next compared CompACT to algorithms for learning
cascades of heterogenous features. Since there is no liter-
ature in this area, we considered two baselines. The first
learns a cascade without complexity constraints (η = 0
in (27)), and is denoted as “Boosting”. It is equivalent to
applying existing cascade learning algorithms to the diverse
feature set considered in this work1. The second attempts
to “hand-code” the behavior of CompACT, restricting the
unconstrained boosting algorithm (η = 0) to use certain
feature types in different cascade stages. This restriction
is based on feature complexity: features were ranked by
complexity and used sequentially. ACF features were used
in the first 512 stages and the other feature types used
equally in the remaining stages. The resulting cascade is
denoted as “Manual”.

1. Since, in this case, all feature channels must have the same size
(downsampling rate), CONV7 features were not used in this section.
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TABLE 2: Comparison to “Boosting” and “Manual” cascades.

Method ACF-based ACF-based+Small CNN
Boosting Manual CompACT Boosting Manual CompACT

MR 32.09 34.39 33.25 17.39 23.51 18.29
time (s) 0.76 0.11 0.11 2.46 0.23 0.28

TABLE 3: Comparison of complexity restricted and sensitive trees.
η 125 250 500 1000 2000 4000 8000 16000

restricted MR 30.97 29.23 29.56 29.84 30.35 30.94 30.59 31.68
Time (s) 0.105 0.104 0.103 0.102 0.101 0.101 0.100 0.100

sensitive MR 29.32 28.30 29.33 29.78 30.16 30.28 30.91 31.31
Time (s) 0.109 0.111 0.103 0.104 0.104 0.101 0.102 0.105

Fig. 10 shows the stage configurations of the “Boosting”
and “Manual” cascades. Since “Boosting” does not penalize
complexity, it frequently selects CONV5 and CONV5CB
features for the early cascade stages. Note that this makes
it too costly to compute features JIT, as discussed in Section
4.1.2. Instead, all channel features are computed at the be-
ginning, enabling feature sharing. Only SS is computed JIT.
Despite this feature sharing, the “Boosting” cascade was still
several times slower than the CompACT cascade. This can
be seen in Table 2, which compares CompACT (η = 500),
“Boosting”, and “Manual”. The two sides of the table differ
in that only ACF-based features were used on the left, while
both these and the small CNN based features were used
on the right. In both cases, the “Manual” cascade has low
complexity but poor accuracy. “Boosting” learns a more
accurate but significantly more complex cascade. CompACT
has the best trade-off between accuracy and complexity.
Note also that the introduction of the small CNN enabled
substantially better cascades.

It is also instructive to compare these results to those
of the homogeneous feature cascades commonly used in
the literature, shown in Fig. 7. When compared to the
heterogeneous CompACT cascades, all homogeneous cas-
cades performed poorly. The CompACT cascade of multiple
ACF features had higher accuracy than all homogeneous
ACF-based feature cascades and was faster than most. The
CompACT cascade of multiple ACF+Small CNN features
had the best overall detection performance. Not only its de-
tection accuracy beat that of the best single-feature cascade
(CONV5CB in Fig. 7), it was also 5 times faster. These results
illustrate the benefits of combining features of multiple
complexities and optimizing the trade-off between accuracy
and complexity.

5.5 Complexity Restricted vs. Sensitive Trees
So far, we have reported on heterogenous feature cascades
using complexity restricted trees as weak learners. The next
set of experiments compared these to cascades of complex-
ity sensitive trees (Section 3.7). Here, we found that the
inclusion of CNN features could lead to some instability.
Although these features have high trigger complexity, they
can have small penalty under (32) if the corresponding
nodes are visited with small enough probability. Since small
probabilities are difficult to estimate, this can lead to signif-
icant errors in node complexity estimates. In result, CNN
features can be selected too often in early cascade stages.
To avoid this, we used only ACF based features in these
experiments. Decision trees of depth 3 were also used to
magnify the differences between the two approaches.

As shown in Table 3, for equal η, complexity-sensitive
trees are more accurate but slower than complexity-

TABLE 4: Faster-RCNN baseline results.
Method Alex VGG ResNet MS-CNN

MR 30.29 15.59 14.91 10.0

TABLE 5: Embedding of large CNNs in CompACT cascades. “+”
denotes additional time, after embedding the CNN, over CompACT.

CompACT
MR 15.27

time (s) 0.34
R-CNN

after NMS
Proposal Embedded

Alex VGG ResNet SDS Alex VGG ResNet SDS
MR 17.33 12.05 13.23 14.66 14.80 11.37 12.31 11.82

time (s) +0.02 +0.06 +0.07 +0.07 +0.02 +0.06 +0.07 +0.07
before NMS

Proposal Embedded
Alex VGG ResNet SDS Alex VGG ResNet SDS

MR 17.09 10.61 12.40 11.38 13.46 9.61 10.65 9.44
time (s) +0.13 +0.21 +0.72 +0.54 +0.13 +0.21 +0.72 +0.54

Fast-RCNN
after NMS

Proposal Embedded
Alex VGG ResNet MS-CNN Alex VGG ResNet MS-CNN

MR 27.55 14.83 15.93 12.65 20.69 11.95 13.00 10.91
time (s) +0.03 +0.24 +0.26 +0.24 +0.03 +0.24 +0.26 +0.24

before NMS
Proposal Embedded

Alex VGG ResNet MS-CNN Alex VGG ResNet MS-CNN
MR 25.32 13.23 12.64 10.12 18.49 10.01 10.65 9.06

time (s) +0.03 +0.24 +0.28 +0.24 +0.03 +0.24 +0.28 +0.24

restricted trees. However, the differences are quite small,
indicating there is no need to enforce trade-off optimization
inside decision trees. This is a positive finding, in three
ways. First, it shows that CompACT is quite robust, making
it unnecessary to carefully optimize each weak learner. Sec-
ond, it is in agreement with the boosting philosophy, whose
point is exactly to aggregate “weak” (i.e. sub-optimal) learn-
ers . The requirement for a very detailed optimization of the
decision tree would violate this principle. Third, complexity-
restricted trees are simpler and easier to implement than
complexity-sensitive trees, making the approach more prac-
tical. Given all this, we use complexity-restricted trees in
what follows.

5.6 Embedding Large CNN models

We next considered the benefits of embedding large CNNs
in CompACT cascades. A cascade of 4096 decision trees of
depth 5 was used in these experiments2. Table 5 compares
the performance of the CompACT cascade with small CNNs
(denoted CompACT), versus its combination with the R-
CNN and Fast-RCNN embedding of several popular mod-
els, including AlexNet [26], VGG-Net [45], and ResNet-101
[23], and the recently proposed SDS-RCNN [4] (excluding
its RPN part). As discussed in Section 4.3, the large CNNs
operated only on proposals generated by CompACT. The
Fast-RCNN models were produced by removing the pro-
posal generator of the Faster-RCNN models, whose baseline
results are shown in Table 4. We investigated the benefits
of 1) applying NMS to the cascade output before vs. after
application of the large CNN, and 2) simply passing cas-
cade detections to the CNN as a set of proposals (denoted
“Proposal”) vs. actually embedding the large CNN in the

2. Because the combination of CONV7 features and these deeper trees
can sometimes over-fit, CONV7 features were not used in this section.
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cascade with (12), to obtain an integrated detector (denoted
“Embedded”).

A number of interesting observations follow from the
table. First, the theoretically sounder embedding of “Em-
bedded” outperformed the more ad-hoc “Proposal” mecha-
nism, in all cases. This shows that CompACT cascade scores
and large CNN scores contain complimentary information.
Second, CompACT is already a good pedestrian detector.
Under “Proposal,” Alex does not improve on the CompACT
cascade. In fact, its MR (15.27) is comparable to the Faster-
RCNN result of ResNet (14.91) in Table 4. Third, higher
detection accuracy was always obtained by applying the
large CNN models before NMS of the cascade output.
Fourth, the embedding of existing detectors on the Com-
pACT cascade can significantly enhance their performance.
The comparison between the columns of “Proposal” under
“before NMS” and the baseline Faster-RCNN results in
Table 4, shows that the proposal generation by CompACT is
stronger than the innate proposal generation of the Faster-
RCNN. In addition, the combination of “Embedded” and
“before NMS” outperformed the baseline Faster-RCNN by
11.8, 5.58, and 4.26, points, for Alex, VGG, and ResNet,
respectively! Finally, the overall best results were obtained
by embedding the MS-CNN before NMS. Although the MS-
CNN uses the backbone VGG-Net, it is better suited for
multi-scale detection than the vanilla Faster-RCNN. Since
pedestrians can appear at very diverse scales, its use leads
to a better trade-off between the accuracy and complexity of
the pedestrian detector. These observations show that many
CNN detectors can be successfully embedded in CompACT,
producing an embedded cascade of higher accuracy than
both the original CompACT and the large CNN detectors.

Table 5 also confirms a property that we have observed
very consistently in all our experiments: the complementar-
ity between ACF and CNN features. This can, for example,
be seen by comparing the performance of the single CNN
feature cascade of Fig. 7 (CONV5 19.96, CONV7 32.34, and
CONV5CB 18.83) to the cascades using ACF+CNN features
in Table 2 (Boosting 17.39 and CompACT 18.29). Note that,
for the combination ACF+CNN, the CompACT cascade is
not only faster (0.28 vs. 0.36, 0.37, 1.35) but also more accu-
rate (18.29 vs. 19.96, 32.34, 18.83) than all single CNN feature
cascades in Fig. 7. More surprisingly, the ACF features are
complementary even with large CNN features. This can be
seen in Table 5, where all large CNN models achieve better
performance when embedded in the CompACT cascade
than when simply using the latter as a proposal mechanism.

With respect to detection complexity, Table 5 shows that
there is no additional cost for “Embedded” over “Proposal”.
However, in both cases, the cost of embedding the R-
CNN increases linearly with the number of proposals. This,
and the fact that NMS rejects many overlapping proposals,
explains why “before NMS” is much more expensive than
“after NMS,” for this model. On the other hand, because the
Fast-RCNN computation is shared among proposal regions,
the complexity of embedding the Fast-RCNN is nearly con-
stant, regardless of the number of proposals. These different
settings make it possible to obtain multiple CompACT cas-
cades of different detection accuracies and complexities. On
the high-end of detection rates, the best trade-off between
complexity and accuracy is achieved by the combination
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Fig. 11: Comparison to the state-of-the-art on Caltech (reasonable).

of Fast-RCNN, MS-CNN, “Embedded,” and “before NMS.”
On the high-end of detection speeds, this holds for the com-
bination of R-CNN, Alex, “Embedded,” and “after NMS.”

Finally, we note that the use of different embedding
strategies and large CNN models enables a range of
speed/accuracy trade-offs of interest for application devel-
opers. In this context, the flexibility enabled the family of
models of Table 5 can far outweigh simple performance
measures, such as speed or accuracy. By simply implement-
ing CompACT, which does not use large CNN features, a
developer can achieve a MR of 15.27 and a running time
of 0.34. This is fairly cheap, and, as will be shown below,
it is both faster and more accurate than other pedestrian
detectors with this property. If higher accuracies are needed,
the table offers a number of other choices. By augmenting
CompACT with an R-CNN based on VGG-Net, “embed-
ded” after NMS, accuracy can be increased by 3.9 points
with a very marginal increase of 0.06s in running time. This
requires a large CNN, but has virtually no additional cost
in running time. It is a GPU based solution that emphasizes
running time over accuracy. On the other hand, augmenting
CompACT with a Fast-RCNN based on the MS-CNN, “em-
bedded” before NMS, significantly increases accuracy (6.2
points) at the cost of a running time increase of 0.24s. This
is one of the top detectors in the literature accuracy-wise, at
the cost of a non-trivial increase in running time. The point
is that the developer has a range of solutions to chose from,
that cover a range of budgets in terms of accuracy, running
time, energy consumption, and implementation cost.

5.7 Pedestrian Detection on Caltech

We next compared CompACT cascades to state of the art
pedestrian detectors. We start by a comparison on Caltech,
with the results of Fig. 11. As usual, we present curves of
miss-rate v.s. false-positives per image (FPPI). CompACT
uses ACF features and a small CNN, and outperforms all
state of the art detectors of handcrafted features [2], [35],
[57]. Note that some of these use many more features (HOG,
LBP, spatial covariance, optical flow, multiple detectors,
etc) and all are quite slow. On the other hand, CompACT
runs at 3 fps on a relatively slow processor. CompACT-
MSCNN embeds the MS-CNN in the last cascade stage.
It outperforms most of the detectors using large CNNs,
e.g. DeepParts [47], RPN+BF [55], SA-FastRCNN [27] and
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TABLE 6: Pedestrian detection mAP comparison on KITTI.
Methods Easy Moderate Hard Time (s)

DPM 50.01 38.35 34.78 10
FilteredICF [57] 61.14 53.98 49.29 40
pAUCEnsT [35] 66.11 54.58 48.49 60

regionlet [50] 72.96 61.16 55.22 1
RCNN [24] 62.05 50.20 44.85 4

DeepParts [47] 70.46 58.68 52.73 1
CompACT 68.62 58.08 52.61 0.5

RPN+BF [55] 75.58 61.29 56.08 0.6
SDS-RCNN [4] - 63.05 - 0.2
SDP+CRC [54] 77.81 64.25 59.31 0.6

Faster-RCNN [38] 78.35 65.91 61.19 2
Mono3D [6] 77.30 66.66 63.44 4.2

3DOP [7] 82.36 67.46 64.71 3
MM-MRFC [10] 82.37 69.96 64.76 0.05
F-PointNet [36] 87.81 77.25 74.46 0.17

CompACT-MSCNN 78.95 68.86 63.67 0.75

UDN+ [34]. The only competitive detector is the SDS-
RCNN of [4]. This has a lower MR than CompACT-MSCNN,
but the miss-rate v.s. FPPI curves behave very differently.
CompACT-MSCNN dominates at low FPPI and SDS-RCNN
at high FPPI. Overall, the two detectors are comparable. The
comparison is also somewhat unfair because CompACT-
MSCNN does not use a CNN to generate proposals. For
completeness, we report on a modified version, denoted
CompACT-MSCNN+, that combines the proposals gener-
ated by the MS-CNN and CompACT, and computes the
final scores using the “Embedded” strategy. This improves
performance at high FPPIs, which becomes close to that of
SDS-RCNN.

5.8 Pedestrian Detection on KITTI

Table 6 compares the mAP of CompACT and CompACT-
MSCNN to the state of the art on KITTI. Since KITTI test
images are larger than those of Caltech, running times
are higher for this dataset. Nevertheless, the CompACT
cascade is among the fastest detectors. Among hand-crafted
detectors (shown at the top of the table) only regionlet [50]
has higher mAP. However, it uses very different features
and is twice as slow. A more informative comparison is
with channel based detectors, such as pAUCEnsT [35] and
FilteredICF [57]. CompACT uses approximately the same
number of feature channels (including the CNN model) but
is both more accurate and faster. Again, CompACT even
outperforms or is competitive with some detectors that use
large CNNs, e.g. RCNN [24] and DeepParts [47].

The CompACT-MSCNN cascade, which includes a large
CNN, outperforms these methods by a large margin. The
second part of the table compares it to models based on
large CNNs. The table is ordered by increasing mAP in the
moderate task. The detectors slightly faster than CompACT-
MSCNN, RPN+BF [55], SDS-RCNN [4] and SDP+CRC [54],
have substantially weaker mAP, e.g. a loss of about 4
mAP points for SDP+CRC. The next three detectors, Faster-
RCNN, Mono3D [6] and 3DOP [7], have weaker mAP and
speed than CompACT-MSCNN. For completeness, we also
present the very best results on this dataset, i.e. MM-FRC
[10] and F-PointNet [36]. These methods use stereo and LI-
DAR data, which the CompACT-MSCNN does not leverage.
They show that 3D information is very helpful on KITTI.
The design of cascades leveraging this information is left
for future work. Note that the F-PointNet cannot be applied
to color images alone, e.g. datasets like Caltech, and MM-

TABLE 7: The results on CityPersons validation set.
Method ACF CompACT Faster R-CNN MS-CNN CompACT-MSCNN+

MR 33.13 25.15 18.35 16.32 14.46
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Fig. 12: Processing time spent per Caltech test image.

MRFC has much weaker performance without 3D data, e.g.
12% on Caltech.

These results show that CompACT can generate high
quality proposals even on datasets like KITTI, where pro-
posal generation is known to be difficult [7]. It is particularly
interesting that CompACT-MSCNN outperforms methods
based on region proposal networks (RPN) [38], such as
RPN+BF [55] or the Faster-RCNN. This shows that, using
only small CNN models, CompACT can generate better pro-
posals than the much more expensive RPN. Finally, it is also
interesting that the closest competitors on Caltech, RPN+BF
[55] and DeepParts [47], and the recent SDS-RCNN [4], are
outperformed by CompACT-MSCNN on KITTI Moderate
by a large margin: 7.57, 10.18 and 5.81 points, respectively.

5.9 Pedestrian Detection on CityPersons

CityPersons [58] is a recent pedestrian detection dataset, col-
lected across multiple European cities. It has 2,975 training
and 500 validation images, and 1,575 images for testing with
held annotations. Images have size 2048×1024 and detection
performance is evaluated as in Caltech. Table 7 compares the
performace of the proposed detectors with the baselines of
ACF [11] and Faster R-CNN [38], on the CityPersons valida-
tion set. For fair comparison, all detectors are implemented
without upsampling the input images, and the Faster R-
CNN was trained using the publicly available codebase
of [5]. The CompACT cascade significantly outperforms
ACF, and the CompACT-MSCNN+ cascade achieves better
results than the Faster R-CNN. Note that the CompACT-
MSCNN+ is an embedded cascade of higher accuracy than
both the CompACT cascade and the very strong MS-CNN
detector. These observations are consistent with the Caltech
experiments.

5.10 CompACT as Attention Mechanism

One interesting property of CompACT, is that a detector
cascade can be seen as an attention mechanism that assigns
computation to image locations according to their detection
complexity. Fig. 12 illustrates this property, summarizing
the computation spent on each of the Caltech test images.
Clearly, time complexity varies significantly with image
content. The image on the left depicts a simple scene, with
few objects and no pedestrian. Since simple and efficient
features are enough to reject all windows, the image is
processed with low complexity. The rightmost image depicts
a more complicated scene with details of various scales
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(foreground vs. background buildings) and several pedes-
trians. In this case, many image regions propagate until
the final stages of the cascade, and complexity is high. In
this sense, CompACT behaves more like the human visual
system. For example, a human annotator quickly realizes
that the left image contains no pedestrians, but requires
significantly longer time to count the number of pedestrians
on the rightmost image.

This behavior is very different from channel-wise object
detectors [35], [57] and CNN based object detectors [5],
[55], whose time complexity is nearly independent of image
content. From an application point of view, this can have
benefits and disadvantages. For example, in Fig. 12, process-
ing time ranges from 0.05 to 2.0 seconds per frame, with a
variance of about 0.04 seconds. This can create problems for
applications that require a fixed processing time. For these,
channel-wise or CNN detectors may be a better solution.
On the other hand, there are benefits to the allocation of
computation as needed, especially when power is an issue.
For example, operating a Titan X GPU card 24-hours/day
requires 6 kWh per day, i.e. 6 times the consumption of a
fridge. This alone can preclude deployment on applications
such as home surveillance, edge devices, drones, etc.

The ability of CompACT to detect the absence of pedes-
trians in a scene with simple CPU-based features enables
drastic energy savings for applications on the home or edge,
where such scenes can happen 99% of the time. On more
complex and rare scenes the detector can activate energy
intensive GPU features or even even ship the image regions
in question to a central GPU, which serves all devices. Note
that, on Caltech, the average image region size processed by
a large CNN is 5.94% and 11.34% when embedding before
and after NMS, respectively. This is opposed to the 100%
of standard CNN implementations, e.g. the Faster R-CNN
[38]. Besides saving energy, this would split the large cost of
a GPU by various edge devices, which could themselves be
inexpensive.

6 CONCLUSION

In this work, we proposed the CompACT boosting al-
gorithm for learning complexity-aware detector cascades.
By optimizing classification risk under a complexity con-
straint, CompACT produces cascades that push features of
high complexity to the later cascade stages. This has been
shown to enable the seamless integration of multiple feature
families in a unified design. This integration extends to
features, such as deep CNNs, that were previously beyond
the realm of cascaded detectors. The proposed CompACT
cascades also generalize the popular combination of object
proposals+CNN, which they were shown to outperform.
Finally, we have shown that a pedestrian detector learned by
application of CompACT to a diverse feature pool achieves
accurate detection rates on Caltech and KITTI, at fairly fast
speeds.
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