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ABSTRACT

CARLSON, J. A., B. LIU, J. F. SALLIS, J. A. HIPP, V. S. STAGGS, J. KERR, A. PAPA, K. DEAN, and N. M. VASCONCELOS. Auto-

mated High-Frequency Observations of Physical Activity Using Computer Vision.Med. Sci. Sports Exerc., Vol. 52, No. 9, pp. 2029–2036,

2020. Purpose: To test the validity of the Ecological Video Identification of Physical Activity (EVIP) computer vision algorithms for auto-

mated video-based ecological assessment of physical activity in settings such as parks and schoolyards. Methods: Twenty-seven hours of

video were collected from stationary overhead video cameras across 22 visits in nine sites capturing organized activities. Each person in

the setting wore an accelerometer, and each second was classified as moderate-to-vigorous physical activity or sedentary/light activity. Data

with 57,987 s were used to train and test computer vision algorithms for estimating the total number of people in the video and number of

people active (in moderate-to-vigorous physical activity) each second. In the testing data set (38,658 s), video-based System for Observing

Play and Recreation in Communities (SOPARC) observations were conducted every 5 min (130 observations). Concordance correlation coeffi-

cients (CCC) and mean absolute errors (MAE) assessed agreement between (1) EVIP and ground truth (people counts+accelerometry) and (2)

SOPARCobservation and ground truth. Site and scene-level correlates of error were investigated.Results:Agreement between EVIP and ground

truth was high for number of people in the scene (CCC = 0.88; MAE = 2.70) and moderate for number of people active (CCC = 0.55;

MAE = 2.57). The EVIP error was uncorrelated with camera placement, presence of obstructions or shadows, and setting type. For both number

in scene and number active, EVIP outperformed SOPARC observations in estimating ground truth values (CCC were larger by 0.11–0.12 and

MAE smaller by 41%–48%).Conclusions: Computer vision algorithms are promising for automated assessment of setting-based physical activ-

ity. Such tools would require less manpower than human observation, produce more and potentially more accurate data, and allow for ongoing

monitoring and feedback to inform interventions.KeyWords:DIRECTOBSERVATION, BUILT ENVIRONMENT, PARK, SCHOOL, VIDEO
Physical activity occurs in multiple settings, including
parks and schoolyards. The environmental features
within these settings can support or inhibit physical ac-

tivity (1). Thus, public health researchers and practitioners seek-
ing to improve understanding of environmental influences on
physical activity, evaluate physical activity interventions, and
track population physical activity trends in such settings com-
monly use ecological (group level) physical activity assessment
tools such as the System for Observing Play and Recreation in
Communities (SOPARC) (2–7). These tools use momentary
direct observation (4), which involves visiting a community
r correspondence: Jordan A. Carlson, Ph.D., 610 E. 22nd St. Kansas
4108; E-mail: jacarlson@cmh.edu.
for publication December 2019.
or publication March 2020.

/20/5209-2029/0
E & SCIENCE IN SPORTS & EXERCISE®
© 2020 by the American College of Sports Medicine

49/MSS.0000000000002341

2029

Copyright © 2020 by the American College of Sports Medicine
setting (e.g., park) and conducting an environmental scan of
users in the area to document the activity level of each user,
at the moment they are observed, as sedentary, walking, or
vigorous (8).

There are several limitations to existing tools. The scans can
be challenging when people’s activity changes rapidly and
when a large number of people are in the setting and crossing
paths with one another. In-person observation requires sub-
stantial staffing, training, observation time, and data entry/
management, which limits the scalability of these tools. Both
inadequate training of staff conducting the scans and inadequate
frequency of data capture can result in invalid data (9,10). The
momentary snapshots of behavior often do not generalize to a
person’s activity during their entire time in the setting or to other
people’s activity in the setting (11). Perhaps most importantly,
assessing only a snapshot (moment) of physical activity substan-
tially limits these tools’ utility for intervention monitoring and
feedback. Moving to automated high-frequency data capture
would enable continuous assessment and allow researchers, pro-
gram leaders, and decision makers to make rapid data-informed
decisions to support just-in-time interventions (12,13).
. Unauthorized reproduction of this article is prohibited.
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 Computer vision, a rapidly growing field of artificial in-

telligence that uses deep learning models to train computer
algorithms to classify features within images and video (14),
provides the opportunity to automate ecological physical ac-
tivity assessment. Although research has shown that computer
vision is promising for assessing physical activity (15), valid
computer vision–based ecological physical activity assess-
ment tools do not yet exist. Such tools are needed because they
could provide more accurate and representative (over time) es-
timates of physical activity due to high-frequency data cap-
ture, and likely result in greater use of ecological physical
activity assessment (improved scalability).

The purpose of this study was to develop and test the validity
of the EcologicalVideo Identification of PhysicalActivity (EVIP)
computer vision algorithms for analyzing video to estimate
group-level physical activity in park and school settings. Ecolog-
ical Video Identification of Physical Activity provided similar
outputs as provided by SOPARC, including the number of people
in the target area and number of people physically active.
FIGURE 1—Computer vision system for EVIP and example video screen shots.
field, paved surface, gymnasium, and playground.
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METHODS

Participants and Procedures

Datawere collected fromnine sites during organized activities,
including after-school programs, park-based programs, and
Physical Education classes. Across the nine sites, the follow-
ing types of settings were captured: four open green spaces/
sports fields, two paved surfaces, two gymnasiums, and two
playgrounds (examples in Figure 1). Data collection occurred
across 1–4 visits per site (22 total visits), with each visit lasting
approximately 1 h. All people involved in the organized activ-
ities were enrolled in the study and outfitted with an acceler-
ometer. Two cameras captured video recordings of the target
area in which the activity occurred. The number of participants
during each visit ranged from 9 to 56, and most were youth. A
mean of 179.1 min (SD = 87.3 min) of data was collected at
each site, for a total of 1611.9 min (26.9 h). This study was ap-
proved by the sponsoring institution’s human subjects’ protec-
tion committee and participants provided informed consent.
Note: Image from left to right, top to bottom are open green space/sports
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Measures

Video. TwoDJI Osmo 4Kwide angle cameras (Model X3/
FC350H; SZ DJI Technology Co.; Ltd, Shenzhen, China)
were used to capture the video recordings. Each camera was
affixed to a Studio Assets MegaMast camera tripod that was
able to be telescoped to a height of 27.5 ft (Koll Ltd; Chicago,
IL). An Apple iPad (Apple Inc., Cupertino, CA) was used to
control the camera via the DJI GO application. Each camera
captured a different perspective of the target area and was
moved halfway through each visit to capture a second perspec-
tive. Thus, a total of four videos capturing unique perspectives
were collected during each visit, with the exception of three
visits that were not long enough to capture the additional two
perspectives. Across the 22 visits, 82 videos capturing unique
perspectives were collected. The camera height and distance
from the base of the camera to the nearest/bottom part of the tar-
get area captured in the video ranged across videos from 8.5 to
24.4 ft (median = 14.9 ft) and 5.3 to 35.4 ft (median = 14.9 ft),
respectively. After data collection, research staff viewed each
of the 82 videos and rated the percent of the scene that was
obstructed (e.g., due to trees or buildings) and the percent that
was covered by shadows (i.e., appearing darker due to the sun
being shadowed by trees or buildings).

Counting number of people (ground truthmeasure
for number of total people). Because the settings captured
involved organized activities, the same number of people were
generally in the target area for a given study visit. The target
areas were restricted during data collection tominimize the occur-
rence of nonparticipants entering the area, and participants were
instructed to stay within the area captured by the camera. How-
ever, in some circumstances, it was difficult to prevent partici-
pants from entering and exiting the viewing area. Thus, research
staff viewed each video after the visits to identify all instances
of when a person left and/or entered the viewing area and record
this information in a database. To facilitate this process, partici-
pants wore T-shirts of various colors with distinct numbers on
the front and back. This allowed the research staff to denote that
a given participant’s accelerometer data (i.e., linked to their shirt
number and color) should be set as “missing” for the second they
left the scene until the second they returned. The number of peo-
ple with nonmissing accelerometer data for a given second served
as the ground truth for the number of total people in the scene.

Accelerometers (used to provide ground truth
measure for number of active people). Participants
wore an ActiGraph GT3X accelerometer (ActiGraph LLC;
Pensacola, FL) on a belt at their left iliac crest, with vertical
axis counts derived for 1-s epochs. The Freedson youth 3METs
(metabolic equivalents) age-based cutpoint was used to classify
each second as moderate-to-vigorous physical activity (MVPA)
or not MVPA (16). The cutpoint for 12-yr-olds was applied to
all participants because participants’ ages were not collected
and 12 yr reflected the midpoint in the age range covered by
the Freedson equation. We chose the Freedson 3-METs cutpoint
because of its lower counts threshold than other cutpoints (17),
which was preferred because it better matched the SOPARC
walking category as walking can include light activity (8).
AUTOMATED DIRECT OBSERVATION
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Derived variables were created by aggregating the data across
participantswhowere in the scene (based on the “counting number
of people”methods described above) to derive the total number of
active (in MVPA), each second. The purpose of using second-
level activity level information was to provide high-frequency
ground truth information for training the EVIP algorithms.

SOPARCobservations. To identify whether EVIP had a
similar level of validity as direct observations conducted by
humans (i.e., current standard of practice for field-based obser-
vations), SOPARC observation scans were conducted approx-
imately once every 5 min on the testing video data, for a total
of 130 observations. The SOPARC scans captured the total
number of people in the scene and the number active (walking
and vigorous were combined) (8). Each scan took between 4
and 44 s to complete (mean = 20.7 s). The video was not stopped
or rewound during the observation to mimic in-person obser-
vations. The observations were completed by two raters who
were trained using the SOPARC training materials (8). A sub-
set of 26 observations were completed independently by both
raters, and inter-rater agreement for the number of people ac-
tive was good (ICC = 0.86).

Training and Testing Data Sets

The videos were divided into 1-s clips, with 60% of the
clips from each site being randomly allocated to a training data
set and the remaining 40% to a testing data set. The training
data set comprised 57,987 s from all 82 videos (camera per-
spectives) from all 22 visits representing all nine sites, and
the testing data set comprised 38,658 s from 78 videos (camera
perspectives) from all 22 visits representing all nine sites.

Computer Vision Algorithm Development

The EVIP algorithms were developed by adapting existing
validated computer vision modules for action recognition. The
system is illustrated in Figure 1. First, the C3D feature extraction
module was used to extract local visual and motion features. It
had been pretrained on a large-scale activity data set (18) and
was transferred to the EVIP data by fine-tuning. It implements
a fully convolutional 3D neural network to extract features
from the video clips (19). Because the module uses deep learn-
ing, features were not determined a priori but rather are ex-
tracted using layers of multiplicative information and thus
are not always well understood or interpretable. Next, the out-
put from the feature extraction module was used in a multi-
layer perceptron regression, which was trained for multitask
regression to predict both the number of total people in the
scene and number of people active (in MVPA) using a loss
function that optimized both predictions.

Analyses

For both the number of people in the scene and number of
people active, boxplots were used to examine the distribution
of EVIP error (predicted � ground truth) across the range of
ground truth values in the second-level data set. Agreement
between EVIP and ground truth measurements was assessed
Medicine & Science in Sports & Exercise® 2031
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 by computing the mean absolute error (MAE) and the value of

Lin’s concordance correlation coefficient (CCC), which mea-
sures goodness of fit around the line of perfect agreement (20).
To compute confidence limits for the MAE and CCC, a non-
parametric bootstrap procedure was carried out. A bootstrap
sample of videos was constructed by randomly selecting 78
videos with replacement, then randomly selecting one 1-s clip
from each of the selected videos. The MAE and CCC were
computed for each of 2000 such bootstrap samples, and the
bootstrap MAE and CCC distributions were used to compute
95% confidence limits. This procedure was chosen to minimize
the effect of clustering of clips within videos while capturing the
variability in sampling both videos and clips within videos. The
agreement analyses described above were repeated on an aggre-
gated data set created by dividing the data into 30-s intervals
and averaging the EVIP and ground truth measurements across
each such interval.Where clips could not be divided evenly into
30-s intervals, the final interval was less than 30 s. Intervals cov-
ering less than 10 s were excluded from analysis.

To examine potential sources of bias, associations of site
and scene features with EVIP error (predicted� ground truth)
were estimated by fitting linear mixed models. Camera height,
camera distance, percent of scene obstructed, and percent of
scene covered by shadows were explanatory variables in one
model, and setting type (open green space/sports field, paved
surface, gymnasium, or playground) was the explanatory var-
iable in the second model, fitted separately due to correlations
between setting type and other explanatory variables. Each
model included a random intercept for video number to adjust
for clustering of clips within videos. The bootstrap procedure
described above was used to obtain bootstrap samples, the
mixed models for the two types of EVIP error (number in
scene, number active) were fitted to each bootstrap sample,
and the bootstrap distributions of the regression coefficients
were used to obtain 95% confidence limits.

To compare the performance of EVIP and SOPARC obser-
vations in predicting the number of people in the scene and
number active, EVIP and ground truth estimates were aver-
aged across each SOPARC observation time period. Mean ab-
solute errors and CCC were computed to assess agreement
between each test method and ground truth (predicted � ground
truth). Bootstrapping was used to construct 95% confidence
limits for MAE and CCC by resampling from the 130 direct
observations.
TABLE 1. Performance of the EVIP algorithms as compared with ground truth.

Data Level and Target Variable

Median (IQR; Range)

Ground Truth E

1-s clips (N = 38,658)
No. people in scene 16 (11–23; 0–50) 16 (11–21;
Number active in scene 4 (2–8; 0–32) 4 (2–7; 0

30-s clips (N = 1254)a

No. people in scene 16.4 (11.3–22.8; 0–50.0) 15.7 (11.5–2
Number active in scene 4.1 (2.0–7.7; 0–20.0) 4.4 (2.3–7.0

aSecond-level EVIP and ground truth values were averaged across each 30-s period.
Ground truth was captured using video observations (people counts) and accelerometers (activity l
CI = confidence interval.

2032 Official Journal of the American College of Sports Medicine
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Criteria for interpreting and CCCwere: small (≤0.40), mod-
erate (0.41–0.60), large (0.61–0.80), and very large (0.81–1.0)
(21). Statistical analyses were performed in R (22).
RESULTS

According to ground truth measurements for the 38,658
clips in the testing data, the median number of total people
in a scene was 16 (interquartile range [IQR], 11–23; range,
0–50), and the median number of people active in a scene
was 4 (IQR, 2–8; range, 0–32; Table 1). The CCC representing
agreement between EVIP and ground truth for the number of
people in the scene was very large (CCC = 0.88), and the
MAE was 2.70 people (16.9% of the ground truth median).
The CCC representing agreement between EVIP and ground
truth for the number of people active in the scene was moder-
ate (CCC = 0.55), and MAE was 2.57 people (64.3% of the
ground truth median). Agreement between EVIP and ground
truth was somewhat improved when values were aggregated
across 30-s clips, particularly for number active, for which
the CCC went from moderate to good.

Figure 2A (left) shows that, for number of people in the
scene, EVIP errors tended to be largest at very low (<4) and
very high (>46) ground truth values. These plots also show
that the variability in errors tended to be larger for ground truth
values that were represented in a smaller number of clips. The
outliers reflected in the boxplot for ground truth values of 38
and 39 were traced to EVIP measurements from two videos.

Figure 2B (right) shows that, for number of people active,
EVIP error was generally small when there were between 0
and 10 people active based on ground truth, and then increased
in the direction of underestimation as the true number of peo-
ple active increased. Virtually all EVIP estimates (99.8%) of
the number of people active were ≤12 people, and none were
>14, whereas 6.1% of ground truth values were >14. The EVIP
underestimation coincided with a reduction in the number of
clips available, such that the number of seconds representing
each ground truth value generally decreased as the number
of people active increased.

Figure 3 shows that the EVIP error was uncorrelated with
EVIP estimates/predictions. Furthermore, EVIP error for the
number of people in the scene and the number of people active
was not associated with camera placement or the percentage of
Mean Absolute Error (95% CI) CCC (95% CI)VIP

2–47) 2.70 (1.87, 3.51) 0.88 (0.74, 0.96)
–14) 2.57 (1.94, 3.00) 0.55 (0.40, 0.70)

1.0; 2.4–45.1) 2.56 (1.79, 3.29) 0.89 (0.75, 0.96)
; 0.8–12.6) 2.20 (1.63, 2.60) 0.62 (0.48, 0.75)

evel).
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FIGURE 2—Error boxplots (top) and number of testing clips (bottom) for number of people in scene and number active Note: The top plots show EVIP
error predicted� ground truth) in the number of total people (A) and number active (B) as a function of the ground truth values for number of total people
and number active; whiskers indicate 5th and 95th percentiles of observed error distribution; the bottom plots show the distribution in the number of total
people (A) and number active (B) across video clips in the testing data set.
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the scene obstructed or shadowed, and errors related to feature
type were 1.5 people or smaller (Table 2).

For both number of people in the scene and number active,
EVIP outperformed SOPARC observation of the video data in
estimating ground truth values (Table 3). For number of people
in scene, the EVIP MAE was 41% smaller than the SOPARC
MAE (2.50 vs 4.24), and the EVIP CCC was higher by 0.16
(0.88 vs 0.72). For number of people active, the EVIP MAE
was 48% smaller than the direct observation MAE (2.14 vs
4.11), and the EVIP CCC was higher by 0.11 (0.66 vs 0.55).
FIGURE 3—Error boxplots by EVIP predicted number active in scene
Notes: The plot shows EVIP error (predicted � ground truth) in the
number active as a function of the predicted values for number of
people active; whiskers indicate 5th and 95th percentiles of observed
error distribution; predicted counts ≥14 (n = 2) excluded.
DISCUSSION

Present findings indicated the computer vision–based EVIP
algorithms can validly estimate the number of people in target
areas captured by overhead video in settings such as parks and
schoolyards. EVIP’s validity for estimating the number of
people active was less strong but considered moderate-to-
good according to established criteria for interpreting CCC,
and its validity was more favorable than that of traditional
SOPARC observation methods. Though more work is needed
to improve the algorithms, particularly for estimating the num-
ber of people who are active in more people-dense scenes,
evidence is accumulating in support of the use of computer
vision in physical activity research and practice (15,23).
AUTOMATED DIRECT OBSERVATION
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Substantial work has been conducted in the field of com-
puter vision related to counting people in crowded areas
(24,25). However, the present study is among the first to train
and show validity of a computer vision algorithm for counting
Medicine & Science in Sports & Exercise® 2033
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TABLE 2. Associations of site and scene features with EVIP error (N = 38,658).

EVIP Error (Predicted � Ground Truth),
Estimate (95% CI)a

No. People in Scene Number Active in Scene

Model 1
Camera height (ft) 0.0 (−0.2, 0.2) 0.0 (−0.2, 0.2)
Camera distance (ft) 0.1 (−0.1, 0.3) 0.0 (−0.2, 0.2)
Percent of scene obstructedb 0.2 (−1.0, 1.0) −0.1 (−0.7, 0.7)
Percent of scene covered

by shadowsb
0.1 (−0.4, 0.2) 0.0 (−0.2, 0.3)

Model 2
Feature type

Open green space/sports field −0.8 (−2.2, 0.4) −0.4 (−1.4, 0.5)
Gymnasium −1.4 (−3.4, 0.6) 1.5 (−5.3, 7.0)
Paved surface −1.1 (−3.1, 0.9) −0.4 (−2.1, 1.1)
Playground 0.3 (−0.7, 1.4) 0.2 (−0.9, 1.1)

a95% bootstrap confidence interval.
bScaled: 1 unit change = 10 percentage point change.
Ground truth was captured using video observations (people counts) and accelerometers
(activity level).
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people in organized physical activity settings for public health
research. The people counting feature of EVIP alone, without
estimating number active, could make a novel contribution to
public health research and practice. Such information would
inform decision making in health-related settings such as
parks, for which leaders (e.g., park managers) commonly have
little-to-no information on the number of people who use the
park and areas of the park that are most used. Given the strong
validity observed in the present study for estimating number of
people, next steps should be to explore the use of EVIP and
similar tools for supporting decision making in such settings.

EVIP’smost significant and novel contribution is its estimation
of the number of people in the scene who are active. Validity es-
timates were only moderate-to-good and distinguishing MVPA
from sedentary/light activity was a challenging task for the algo-
rithms. Thiswas apparent given the large variations in error across
clips and MAE that suggested an average over- or under-
estimation of 2.2 people (≈54%) in physical activity in the 30-s
clips. More work is needed to train more robust algorithms that
can consistently estimate with accuracy and provide more valid
estimates in circumstances involving large numbers of people.

In regard to understanding situations when EVIP fails, there
was evidence that error increased as the number active in-
creased, which was likely at least partly due to the underrepre-
sentation in the data set of scenes with many people active.
Although it may appear that the algorithm could be improved
by adjusting estimates upward as the estimated number of peo-
ple active increases, this is not likely because there was little
TABLE 3. Performance of EVIP and SOPARC observations in predicting ground truth values (N = 1

Target Variable and Data Source Median (IQR; Range)

No. people in scene
Ground truth 16.0 (11.2–22.0; 1.9–46.8)
EVIP 15.8 (11.3–21.0; 4.5–43.2)
SOPARC observations 14.5 (10.3, 21.0; 0–36)

Number active in scene
Ground truth 3.5 (1.9–7.6; 0.0–18.2)
EVIP 4.1 (2.0–7.5; 0.8–11.6)
SOPARC observations 8.0 (5.0, 11.8; 0–25)

Ground truth was captured using video observations (people counts) and accelerometers (activity le
SOPARC observation period.

2034 Official Journal of the American College of Sports Medicine
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evidence that EVIP errors were negatively correlated with
EVIP estimates themselves. Future studies should strive to in-
clude more of these rarer but potentially more challenging
people-dense and highly active scenes. Other potential sources
of error that were measured did not appear to impact error, in-
cluding occlusions rated at the level of the video/perspective
and setting type. Qualitative review of video suggested that
EVIP had the lowest accuracy in the sites in which people
were smallest/furthest from the camera. Multiscale problems
(in the case of EVIP having both large/near and small/far peo-
ple) are well known in computer vision. Although researchers
have created tools for overcoming multiscale problems (26),
more work is need to create tools that can address the particu-
larly small size of people in many EVIP scenes.

EVIP addresses many of the limitations of traditional SOPARC
observations through automation and high-frequency data
capture. Traditional SOPARC observation scans are known
to involve error (11), so it was important to investigate how
EVIP error compared with error involved in SOPARC ob-
servations. The finding that error was slightly lower for
EVIP than SOPARC observations provides additional evi-
dence in support of EVIP. It is important to note that the
video was not stopped or rewound during the SOPARC ob-
servations, which would have likely led to increased accu-
racy. It is also important to note that SOPARC observations
were not made in real-time in this study but on the video data,
likely improving observation accuracy over field-based observa-
tions, which are subject to greater distraction. Amajor source of
error in human observation relates to sampling and the use of
momentary assessment, which involves observing each person
one at a time only for a moment (4,8). EVIP overcomes these
limitations by capturing every person every second – a primary
advantage of the high-frequency data capture made possible by
automation. High-frequency data capture also supports the
capture of short-term variations in setting-based activity, such
as comparing the number active across the duration of a
30-min activity (e.g., sports practice) (27,28). Similarly, auto-
mation supports researchers and practitioners to better capture
a representation of activity in a setting by assessing multiple
full days of data rather than relying on a sample of brief time
periods across a limited number of days, which is the standard
of practice for field-based SOPARC observations (8). Another
unique advantage of automated assessment is that it has potential
for supporting just-in-time monitoring and feedback systems
to inform interventions (12,13,29).
30 observations).

Mean Absolute Error (95% CI) CCC (95% CI)

— —

2.50 (1.87, 3.22) 0.88 (0.77, 0.95)
4.24 (3.36, 5.17) 0.72 (0.64, 0.79)

— —

2.14 (1.78, 2.55) 0.66 (0.58, 0.76)
4.11 (3.57, 4.71) 0.55 (0.42, 0.65)

vel); second-level ground truth and EVIP values were averaged across the duration of each
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Strengths, limitations, and future directions. Strengths
of the present study included capturing a variety of setting types,
free-living activities, and people densities; investigating potential
sources of bias; and comparing performance between EVIP and
traditional SOPARCobservations. Therewere several limitations
that should be considered when interpreting the findings. The
EVIP algorithms were both trained and tested on all sites, so
the validity of EVIP when applied to a new untrained site is
unknown. Calibration data and processes are likely to be
needed to “transfer” the algorithms to a new site. A larger
number of sites with greater diversity is likely needed to train
algorithms that can generalize across sites and should be cap-
tured in future studies. All data were collected during daylight,
so the algorithms are not likely to perform well in the dark.
The ground truth measure was limited by providing only
scene-level information (the total number of people and num-
ber active). Using person-/location-linked ground truth infor-
mation, which could be done with high quality using direct
observation of video, would allow the use of additional com-
puter vision modules and techniques and should be explored
in future studies. Rigorous second-by-second video observa-
tions may also provide a more accurate ground truth measure
than that used in the present study. EVIP is currently not read-
ily usable without computer vision expertise. Future work is
needed to package and disseminate validated algorithms in a
user-friendly platform. A limitation of the camera approach
compared with human in-person observations is the restricted
field of view. A limitation to automated video assessment is
AUTOMATED DIRECT OBSERVATION
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the inability to capture equity-related variables such as age,
sex, and race/ethnicity, though these characteristics are also
challenging to collect via human observations.
CONCLUSIONS

The present study found that novel computer vision algo-
rithms can be used to estimate the number of total people and
number people active from video recordings of target areas in
parks and schoolyards with moderate-to-good validity, when
trained on the same settings they are applied to. Thus, computer
vision appears promising for automating ecological assessment
of setting-based physical activity, but further work is needed
to create generalizable algorithms with low error variability.
Such automated high-frequency data capture is advantageous
because it can circumvent some of the key limitations to tradi-
tional field-based direct observations and support just-in-time
monitoring and feedback for those delivering interventions.
More research is needed on the application of computer vision-
based physical activity assessment tools in both observational
and intervention studies in a variety of settings.
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