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Abstract

Probabilistic kernels offer a way to combine generative models with discriminative
classifiers. We establish connections between probabilistic kernels and feature space
kernels through a geometric interpretation of the previously proposed probability prod-
uct kernel. A family of probabilistic kernels, based on information divergence mea-
sures, is then introduced and its connections to various existing probabilistic kernels
are analyzed. The new family is shown to provide a unifying framework for the study
of various important questions in kernel theory and practice. We exploit this prop-
erty to design a set of experiments that yield interesting results regarding the role of
properties such as linearity, positive definiteness, and the triangle inequality in kernel
performance.
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1 Introduction

There are many problems, such as speech processing or computer vision, where it is
natural to adopt a localized data representation [1]. This consists of representing each
observation (e.g. image) as a collection (or bag) of low-dimensional feature vectors
(e.g. small image patches or their projection into some linear feature space). This
collection is in turn most naturally represented by its probability density function, pro-
ducing a compact representation that depends on a small number of parameters. Each
observation is thus mapped into a probability density function defined on the space of
localized feature vectors. Combining a localized representation (or generative models,
in general) with discriminative classifiers has shown promise in several classification
problems involving proteins [2], audio and speech [3], and images [1]. While this
framework has the appeal of combining the generalization guarantees of discrimina-
tive learning with the invariance and robustness to outliers induced by the localized
representation, its implementation is not trivial. In the domain of kernel-based clas-
sifiers, such as support vector machines (SVMs), one source of difficulty is that most
commonly used kernels (e.g. polynomial and Gaussian) are not defined on the space
of probability distributions. This limitation has motivated the introduction of various
probabilistic kernels, including theFisher [2], TOP [4], probability product[5], and
Kullback-Leibler[3] kernels, in the recent years.

Different probabilistic kernels can have very different properties and behaviors.
One distinctive feature is the existence, or not, of a closed-form expression for the ker-
nel function in terms of the parameters of the generative models on which it acts. The
existence of such closed-form solutions is computationally appealing since, in their
absence, the kernel function must be evaluated by expensiveMonte Carlo methods.
While some probabilistic kernels have closed-form solution for most conceivable gen-
erative models [5], others can be solved in closed form for certain probability families,
e.g. the exponential family, but not for others, e.g. mixture models [1]. At this point,
the existence of widespread closed-form solutions appearsto be linked to the linearity
of the kernel, i.e. the possibility of interpreting the kernel as a linear kernel in the space
of probability distributions. It is not clear, however, whether this restriction to linearity
has itself a limiting impact on the performance of the resulting classifiers.

A second distinctive feature is the relationship to traditional kernels, such as the
popular Gaussian kernel, that are monotonic functions of a metric (e.g. the Euclidean
distance for the Gaussian kernel). Such kernels, which we refer to asmetric kernels,
are of particular interest because various probabilistic kernels are defined likewise, but
rely on similarity functions that are not metrics, e.g. the symmetric Kullback-Leibler
(KL) divergence. At the fundamental level, the only apparent difference between the
metric kernels and these probabilistic kernels is that the similarity functions of the latter
do not obey the triangle inequality. It is currently not wellunderstood what the role of
the triangle inequality plays in even the most elementary kernel properties, e.g. the
positive definiteness of the kernel.

This leads us to the third distinctive feature, which is the existence of a proof of
positive definiteness for each kernel. While some kernels can be trivially shown to be
positive definite (PD) [2, 5], such a proof appears very non-trivial for most. Although
positive definiteness is a central concept in kernel theory (in the sense that it enables the
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interpretation of the kernel as a dot product in a transform space) a PD kernel does not
always seem to be a necessary condition for a SVM to achieve good performance. In
some cases, experimental evidence reveals that a small amount of negative definiteness
(i.e. a small percentage of negative eigenvalues of small amplitude) does not hurt per-
formance, and may in fact lead to better classifiers than those achievable with provably
PD probabilistic kernels. This observation appears to reach beyond the realm of prob-
abilistic kernels [6]. Theoretically, it has been shown that a geometric interpretation of
the SVM optimization problem is possible even in the absenceof positive definiteness
[7]: SVM optimization using a non-PD kernel is equivalent tooptimal separation of
convex hulls in a pseudo-Euclidean space. In practice, SVM-training is frequently im-
plemented with procedures, such as the SMO algorithm, that only consider 2x2 kernel
matrices. For these matrices, most probabilistic kernels can be shown to be PD (and
certainly all that we discuss in this work), therefore guaranteeing training convergence,
albeit possibly not to the globally optimal solution [6].

The ability to make progress with respect to these open questions seems constrained
by the inexistence of a common framework in which they can be addressed in a unified
form. To address this problem, we introduce a new family of probabilistic kernels.
This family is a direct generalization of the KL kernel, consisting of the set of kernels
that are negative exponents of a generic information divergence. It is an interesting
family in the sense that 1) it has direct connections to many existing probabilistic ker-
nels, and 2) it contains, as special cases, kernels that exhibit most types of behavior
discussed above. For example, while not guaranteed to be PD in general, all kernels
in this family can be made PD by appropriate choice of parameters. We consider in
detail two cases of special interest, the Rényi and Jensen-Shannon kernels, which are
shown to have close connections with the probability product kernel (PPK) and the
metric kernels, respectively. These connections enable new insights regarding some of
the fundamental questions discussed above (e.g. a new interpretation of kernel non-
linearity as a transformation to a new space where densitiesare subject to different
amounts of smoothing) and establish a unified framework for addressing the others.
We explore this framework by designing a set of experiments that produce new, and
sometimes surprising, evidence regarding the role of the kernel positive definiteness
and linearity, as well as the role of triangle inequality.

2 Probabilistic kernels and SVMs

Given a feature spaceX , a set of training examples{x1, ..., xN} ∈ X , and a function
K : X × X → R, a SVM is a discriminative classifier that constructs a maximum-
margin hyperplane in a transformed feature space, defined bythe functionK, known
as the kernel. One interpretation of the kernel functionK(xi, xj) is that it measures
the similarity between two pointsxi andxj in the feature spaceX . A popular example
is the Gaussian kernel, defined asKg(xi, xj) = exp(−γ‖xi − xj‖

2), which is an
example of a metric kernel based on the negative exponent of the square of a metric.

Under the localized data representation, each example is reduced to a probability
density function (defined on a space of localized feature vectors) and the kernel be-
comes a measure of similarity between probability distributions. A probabilistic kernel
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is thus defined as a mappingK : P × P → R, whereP is the space of probability
distributions. One example is theprobability product kernel(PPK) [5]

Kρ(p, q) =

∫

Ω

p(x)ρq(x)ρdx (1)

whereρ is a parameter andp(x) andq(x) are probability distributions defined on the
spaceΩ. In [5], the PPK is proven to be trivially positive definite. The PPK has two
interesting special cases. The first, obtained withρ = 1/2, is theBhattacharyya kernel

K 1

2

(p, q) =

∫

Ω

√

p(x)
√

q(x)dx (2)

The second, obtained withρ = 1, is theexpected likelihood kernel(or correlation
kernel), which measures the correlation between the two distributions,

K1(p, q) =

∫

Ω

p(x)q(x)dx. (3)

While the PPK has a closed-form solution for distributions in the exponential family
[5], a closed-form solution for mixture distributions onlyexists whenρ = 1 (the linear
case). Hence, the correlation kernel has the appeal that it is computationally efficient
on mixture distributions. This is an important attribute since many models of interest
can be seen as mixtures or mixture extensions [5]. However, the correlation kernel
suffers from two serious problems: 1) when the dimensionality of Ω is large, the kernel
values are badly scaled; and 2) it is unnormalized in the sense that the auto-correlation
of a probability distribution can take a wide range of values1. These two problems
frequently lead to kernel matrices that are ill-conditioned.

The limitations of the correlation kernel can be avoided by normalizing the corre-
lation function, leading to thenormalized correlation kernel,

KN(p, q) =

∫

Ω p(x)q(x)dx
√

∫

Ω p(x)2dx
√

∫

Ω q(x)2dx
(4)

which can be shown to be positive definite with a proof similarto that of [5]. This
kernel has a closed-form solution for mixture distributions whenever the same holds
for the corresponding mixture components. Noting thatK1(p, q) is itself a valid inner
product between functions, i.e.K1 = 〈p(x), q(x)〉Ω, where

〈p(x), q(x)〉Ω =

∫

Ω

p(x)q(x)dx, (5)

the correlation kernel can be seen as the extension (to the space of probability distri-
butions) of the linear kernel,KL(xi, xj) = 〈xi, xj〉 = xT

i xj , wherexi, xj ∈ R
n.

This enables an interesting geometric interpretation of the PPK and the normalized
correlation kernel. In particular, by rewriting

Kρ(p, q) = 〈Φ[p(x)], Φ[q(x)]〉Ω (6)

1For example, the maximum and minimum values of auto-correlation for the data set used in this study
was3.7346x10−04 and3.0314x10−96 for a feature space of 64 dimensions.
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whereΦ[p(x)] = p(x)ρ, the former can be interpreted as a linear kernel in a trans-
formed feature space. The feature transformation,Φ[p(x)], is a smoothing operation
onp(x) controlled by the parameterρ. The functionp(x) is unsmoothed whenρ = 1,
and asρ decreases,p(x) becomes more smoothed, eventually becoming constant when
ρ = 0. For the normalized correlation kernel we have

KN(p, q) =
〈p(x), q(x)〉Ω

‖p(x)‖Ω‖q(x)‖Ω
= cos(p, q), (7)

i.e. the kernel computes the cosine of the angle betweenp(x) andq(x) in the inner
product space of (5). Due to their connection to the standardlinear kernel we refer to
the correlation and normalized correlation kernels aslinear probabilistic kernels.

3 Kernels based on divergence measures

Under the interpretation of the kernel as a measure of similarity, it is possible to define
kernels based on information divergences, which are measures of dissimilarity between
probability distributions. One common measure is the the Kullback-Leibler (KL) di-
vergence

KL(p||q) =

∫

Ω

p(x) log
p(x)

q(x)
dx. (8)

This is a non-negative function, equal to zero whenp(x) = q(x). TheKullback-Leibler
kernel[3] is obtained by exponentiating the symmetric KL divergence,

KKL(p, q) = e−a(KL(p||q)+KL(q||p)) (9)

wherea > 0 is a kernel parameter akin to the variance of the standard Gaussian ker-
nel. More generally, it is possible to create a family of kernels by exponentiating any
divergence between two probability densities,

K(p, q) = e−aF (p||q) (10)

whereF (p||q) is a non-negative function, equal to zero if and only ifp(x) = q(x),
and symmetric in the argumentsp(x) andq(x). Note that, whenG(p||q) =

√

F (p||q)
obeys the triangle inequality (i.e.G(p||q) ≤ G(p||r) + G(r||q)), F is the square of a
metric, and the kernel is a metric kernel. In the remainder ofthis section we consider
two information divergence kernels that establish connections with the PPK and the
family of metric kernels, and address the issue of positive definiteness.

3.1 Rényi kernel

The Rényi divergence [8] is an alternative divergence measure based on a relaxed set
of the information postulates that define the Shannon entropy. The Rényi divergence
of order-α is defined as

Dα(p||q) =
1

α − 1
log

∫

Ω

p(x)αq(x)1−αdx (11)
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whereα > 0 andα 6= 1. The Rényi divergence is a generalization of the KL diver-
gence, and it can be shown that they are equal asα → 1 [8]. The Rényi kernelis
obtained by exponentiating the symmetric Rényi divergence,

KD(p, q) = e−a(Dα(p||q)+Dα(q||p)) (12)

=

[
∫

Ω

p(x)αq(x)1−αdx

∫

Ω

p(x)1−αq(x)αdx

]
a

1−α

. (13)

Settinga = 1−α
2 leads to a form similar to the PPK

KD(p, q) =

√

∫

Ω

p(x)αq(x)1−αdx

∫

Ω

p(x)1−αq(x)αdx. (14)

It is clear from this form that, forα = 1/2, the Rényi kernel is the Bhattacharyya
kernel, which is a special case of the PPK.

The role ofα in the Rényi kernel is similar to that ofρ in the PPK. Both parameters
control the amount of smoothing applied to the probability densities. In the case of
the PPK, bothp(x) andq(x) receive the same amount of smoothing. This constraint is
relaxed by the Rényi kernel which supports a different amount of smoothing for each
density. Since, in the first integral of (14),p(x) is smoothed byα andq(x) by 1 − α,
for smallα the integral is the correlation of a smoothedp(x) and an unsmoothed (or
slightly smoothed)q(x). The second integral of (14) reverses the roles of the two den-
sities, therefore ensuring the symmetry of the kernel. The Rényi kernel is the geometric
mean of the two correlations.

3.2 Jensen-Shannon kernel

The Jensen-Shannon (JS) divergence [9] is a measurement of whether two samples,
defined by their empirical distributions, are drawn from thesame source distribution.
The JS divergence is defined as

JS(p||q) = H [βp(x) + (1 − β)q(x)] − βH [p(x)] − (1 − β)H [q(x)] (15)

whereβ is a parameter andH [p(x)] = −
∫

Ω p(x) log p(x)dx is the Shannon entropy
of p(x). Substituting forH and settingβ = 1/2, the JS divergence becomes

JS(p||q) =
1

2
KL(p||r) +

1

2
KL(q||r) (16)

wherer(x) = 1
2p(x) + 1

2q(x). This divergence can be interpreted as the average
distance (in the KL sense) between each probability distribution and the average dis-
tribution, or equivalently as thediversity [10] of two distributions with equal priors.
Using the fact thatH is a concave function, it can be shown that the JS divergence
is non-negative and equal to zero whenp(x) = q(x). Exponentiating this divergence
measure leads to theJensen-Shannon kernel

KJS(p, q) = e−aJS(p||q). (17)
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It is proven in [11] that (16) is the square of a metric from which it follows that the
JS kernel is a metric kernel. Furthermore, (16) is a negativedefinite kernel [12], and
by applying simple properties of positive definite kernels [13], the JS kernel is positive
definite.

3.3 Positive definiteness

There is currently little understanding regarding the positive definiteness (PD) of the
KL and Rényi kernels. Nevertheless, one aspect that makes the family of informa-
tion divergence kernels interesting is that they can alwaysbe made PD by appropriate
choice of parameters. In particular, as long as no two densities in the training set are
exactly alike (zero divergence), it is always possible to make the kernel matrix diago-
nally dominant [14], and therefore PD, by makinga sufficiently large. In the extreme,
asa → ∞, the kernel matrix approaches the identity matrix. Interestingly, the kernel
matrix is also guaranteed to be PD asa → 0, since all the entries converge to 1. Clearly,
none of these PD extremes is desirable since they imply making all the examples alike
or making each example similar only to itself. Nevertheless, they illustrate how forc-
ing a kernel to be PD can reduce its expressiveness, and hurt classification accuracy.
In practice, the positive definiteness of a kernel can usually be checked by evaluat-
ing the positive definiteness of the kernel matrices obtained with particular data sets.
For probabilistic kernels this is not always true since, in the absence of closed-form
solutions, the non positive definiteness of a kernel matrix can result from inaccurate
approximations2. With regards to the kernels discussed above, we have found that the
KL and Rényi kernels can produce matrices with negative eigenvalues, albeit usually
only a few and of much smaller amplitude than their positive counterparts.

4 Experiments and results

We used the COREL database to experiment with the different probabilistic kernels in
an image classification task. The COREL database contains a variety of image classes,
including landscapes, animals, underwater scenes, and structures. We selected 15 im-
age classes from the database, each class containing 100 images, for a total of 1500
images. Each image was represented using a localized representation [1] by scanning
each color channel with an 8x8 window shifted every 4 pixels.A feature vector was
created from each 192-pixel window by computing the 64 lowest frequency coefficients
of its discrete cosine transform (DCT). Finally, a mixture of 8 Gaussians of diagonal
covariance was fit to the collection of DCT vectors extractedfrom the image.

4.1 Experiment setup

The image database was split with 80% of the images for training and the remain-
ing 20% for testing. A multi-class SVM was constructed usingthe 1-v-1 MaxVotes

2Even though the Bhattacharyya kernel is provably PD, we havefound it to sometimes produce kernel
matrices with negative eigenvalues, when evaluated via Monte Carlo approximations.
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method [15]. Preliminary results showed it to outperform other multiclass SVM meth-
ods, such as the 1-v-1 DAG-SVM or the 1-v-all SVM [15]. The SVMwas trained
with six probabilistic kernels: the Kullback-Leibler (KL), Rényi, Jensen-Shannon (JS),
Bhattacharyya (Bh), correlation (Corr), and normalized correlation (NC). Kernel pa-
rameters were selected by cross-validation, using 70% of the training set for training
and the remaining 30% validation. Once the best parameters were found, the SVM
was trained using all the training data. For the divergence-based kernels (KL, Rényi,
and JS), the parameters were selected froma ∈ {2−10, 2−9, ..., 24}, and additionally
for the Rényi kernel,α ∈ {0.1, 0.2, ..., 0.8}. The C-SVM formulation was used, with
C ∈ {2−2, 2−1, ..., 212}, and the SVMs were trained and tested usinglibsvm [16].
All probabilistic kernels without closed-form solution were evaluated using a Monte
Carlo approximation with 10,000 points.

Two additional classifiers were trained as baseline comparisons. The first, a stan-
dard Bayesian classifier (GMM Bayes) was trained using the DCT features generated
by the localized representation, modeling each class conditional density as a mixture of
32 Gaussians. The second was an SVM using the image pixels as feature vector (Im-
age SVM). Each image was cropped and downsampled into an 88x54 thumbnail, and
converted into a 4752-dimensional vector by concatenatingthe rows of the thumbnail.
The SVM was trained with the Gaussian kernel withγ selected by cross-validation
overγ ∈ {2−10, 2−9, ..., 24}. Finally, all experiments were repeated for a range of di-
mensions of the DCT space (i.e. the number of DCT coefficientsused in the localized
representation).

4.2 Experiment results

The results of classification accuracy versus the dimensionof the DCT space are pre-
sented in Figures 1a and 1b. Clearly, normalizing the correlation kernel improves the
classification performance significantly (improvement of about 60% in the worst case).
Nonetheless, the non-linear probabilistic kernels (KL, R´enyi, JS, and Bh) outperform
the two linear probabilistic kernels for all dimensions. These results suggest that the
linear feature space of probability distributions is not expressive enough for image clas-
sification. On the other hand, the non-linear probabilistickernels induce a transformed
feature space (e.g. the Bhattacharyya and Rényi kernels apply density smoothing) that
appears to improve classification significantly. In the Bhattacharyya case, a direct geo-
metric interpretation is possible: the smoothing transformation expands the support of
each density, increasing the correlation with its neighbors. This improves the general-
ization of the kernel, by making it capable of capturing similarities between densities
that are close but do not have extensive overlap.

The non-linear probabilistic kernels performed similarly, as seen in Figure 1b, (note
that the vertical scale is different) but the Rényi and KL kernels appear to have slightly
better performance. The fact that the JS kernel is a metric kernel does not seem to
lead to any clear advantage in terms of classification accuracy. Interestingly, the per-
formance of the two provably PD kernels (JS and Bh) drops slightly as the dimension
of the DCT space increases. On the other hand, the performance of the two non-PD
kernels (KL and Rényi) improves slightly. To further test the importance of positive
definiteness we examined the performance of the KL kernel in more detail. The percent
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Figure 1: Classification accuracy versus feature space dimension for(a) all the classifiers and (b) the
non-linear probabilistic kernel SVMs, and (c) the percent of the training data used as support vectors.
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Figure 2:(left) Negative eigenvalue energy and (right) classification accuracy versusa for the KL kernel.

magnitude of negative eigenvalues was calculated for a range of values ofa, and aver-
aged over the kernel matrices used in training. For each value of a, the classification
accuracy was measured, usingC = 1. Figure 2 shows the plot of (left) the percent neg-
ative energy of the eigenvalues and (right) the classification accuracy versusa. Clearly,
while the kernel matrix can be forced to be PD, the classification accuracy actually
decreases. In fact, the best classifiers seem to occur when the kernel contains some
amount of negative eigenvalue energy. These results support the conjecture that strict
enforcement of properties such as positive definiteness or the satisfaction of the triangle
inequality may not always lead to the best classifier performance.

The generalization capability of the SVM is known to be related to the number
of support vectors used by the classifier. For example, Vapnik has shown (Theorem
5.2 of [17]) that the probability of error is bounded by the ratio of the number of sup-
port vectors to the number of training samples. Figure 1c shows the percentage of the
training data used as support vectors by the different kernels. The number of support
vectors used by the KL and Rényi kernels was less than the other kernels and stayed
approximately constant with the dimension of the DCT space.This suggests that the
generalization capability of the KL and Rényi kernels is better than the other proba-
bilistic kernels, which is confirmed by the performance curves in Figures 1a and 1b.

Regarding the baseline methods, the non-linear probabilistic kernels outperformed
both the image-based SVM and the GMM Bayes classifier. This was expected since,
for the image-based SVM, the feature space is highly variant(in the sense that two
spatially transformed versions of the same image may lie very far away in feature
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space) and the hence classification problem is more difficult[1]. For GMM Bayes
this was also expected, given the well known improved generalization ability of large-
margin classifiers.

Overall, the experimental results support the following conclusions: 1) linear prob-
abilistic kernels are not expressive enough for image classification; 2) non-linear prob-
abilistic kernels, whether based on density smoothing or oninformation divergences,
are better for this task; 3) strict kernel positive definiteness is not always required for
good classification results; and 4) some negative eigenvalue energy does not hinder,
and can even help, classification performance.
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