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Abstract

Probabilistic kernels offer a way to combine generative ete@dith discriminative
classifiers. We establish connections between probabikstnels and feature space
kernels through a geometric interpretation of the previopoposed probability prod-
uct kernel. A family of probabilistic kernels, based on imfation divergence mea-
sures, is then introduced and its connections to variougtiegi probabilistic kernels
are analyzed. The new family is shown to provide a unifyiragrfework for the study
of various important questions in kernel theory and practigVe exploit this prop-
erty to design a set of experiments that yield interestirsglte regarding the role of
properties such as linearity, positive definiteness, aadrithngle inequality in kernel
performance.
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1 Introduction

There are many problems, such as speech processing or camfsibn, where it is
natural to adopt a localized data representation [1]. Tbissists of representing each
observation (e.g. image) as a collection (or bag) of lowsatisional feature vectors
(e.g. small image patches or their projection into somealirfeature space). This
collection is in turn most naturally represented by its @ioibty density function, pro-
ducing a compact representation that depends on a smallenwofiparameters. Each
observation is thus mapped into a probability density fiamctlefined on the space of
localized feature vectors. Combining a localized repregiam (or generative models,
in general) with discriminative classifiers has shown pi@rin several classification
problems involving proteins [2], audio and speech [3], amagdes [1]. While this
framework has the appeal of combining the generalizatiarantees of discrimina-
tive learning with the invariance and robustness to owliaduced by the localized
representation, its implementation is not trivial. In thenthin of kernel-based clas-
sifiers, such as support vector machines (SVMs), one sodidifioulty is that most
commonly used kernels (e.g. polynomial and Gaussian) ardefmed on the space
of probability distributions. This limitation has motiat the introduction of various
probabilistic kernels, including thEisher [2], TOP [4], probability product[5], and
Kullback-Leibler[3] kernels, in the recent years.

Different probabilistic kernels can have very differenbperties and behaviors.
One distinctive feature is the existence, or not, of a cldsech expression for the ker-
nel function in terms of the parameters of the generativeatsooh which it acts. The
existence of such closed-form solutions is computatigratipealing since, in their
absence, the kernel function must be evaluated by expeliivee Carlo methods.
While some probabilistic kernels have closed-form sohufmr most conceivable gen-
erative models [5], others can be solved in closed form fam@eprobability families,
e.g. the exponential family, but not for others, e.g. migtarodels [1]. At this point,
the existence of widespread closed-form solutions appedrs linked to the linearity
of the kernel, i.e. the possibility of interpreting the kekas a linear kernel in the space
of probability distributions. It is not clear, however, viher this restriction to linearity
has itself a limiting impact on the performance of the résgltlassifiers.

A second distinctive feature is the relationship to traditil kernels, such as the
popular Gaussian kernel, that are monotonic functions oétiim(e.g. the Euclidean
distance for the Gaussian kernel). Such kernels, which ez te asmetric kernels
are of particular interest because various probabiligio&ls are defined likewise, but
rely on similarity functions that are not metrics, e.g. tienmetric Kullback-Leibler
(KL) divergence. At the fundamental level, the only appaudifierence between the
metric kernels and these probabilistic kernels is thatithéarity functions of the latter
do not obey the triangle inequality. It is currently not watiderstood what the role of
the triangle inequality plays in even the most elementamédeproperties, e.g. the
positive definiteness of the kernel.

This leads us to the third distinctive feature, which is tRestence of a proof of
positive definiteness for each kernel. While some kerneisbestrivially shown to be
positive definite (PD) [2, 5], such a proof appears very nmonal for most. Although
positive definiteness is a central concept in kernel thearhé sense that it enables the
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interpretation of the kernel as a dot product in a transfqrate) a PD kernel does not
always seem to be a necessary condition for a SVM to achieve gerformance. In
some cases, experimental evidence reveals that a smalhaofmegative definiteness
(i.e. a small percentage of negative eigenvalues of smailirde) does not hurt per-
formance, and may in fact lead to better classifiers tharethokievable with provably
PD probabilistic kernels. This observation appears totlrdéeyond the realm of prob-
abilistic kernels [6]. Theoretically, it has been showntthgeometric interpretation of
the SVM optimization problem is possible even in the abserfigmsitive definiteness
[7]: SVM optimization using a non-PD kernel is equivalentayptimal separation of
convex hulls in a pseudo-Euclidean space. In practice, Shdihing is frequently im-
plemented with procedures, such as the SMO algorithm, thigtamnsider 2x2 kernel
matrices. For these matrices, most probabilistic kernatsbe shown to be PD (and
certainly all that we discuss in this work), therefore gméeaing training convergence,
albeit possibly not to the globally optimal solution [6].

The ability to make progress with respect to these open qussteems constrained
by the inexistence of a common framework in which they candukessed in a unified
form. To address this problem, we introduce a new family afbabilistic kernels.
This family is a direct generalization of the KL kernel, cstisig of the set of kernels
that are negative exponents of a generic information dameg. It is an interesting
family in the sense that 1) it has direct connections to maaistiag probabilistic ker-
nels, and 2) it contains, as special cases, kernels thabierhost types of behavior
discussed above. For example, while not guaranteed to be BBnieral, all kernels
in this family can be made PD by appropriate choice of pararsetWe consider in
detail two cases of special interest, the Rényi and JeSsamnon kernels, which are
shown to have close connections with the probability prodtecnel (PPK) and the
metric kernels, respectively. These connections enalamsghts regarding some of
the fundamental questions discussed above (e.g. a newrietation of kernel non-
linearity as a transformation to a new space where dengitiesubject to different
amounts of smoothing) and establish a unified framework @oir@ssing the others.
We explore this framework by designing a set of experimdmis produce new, and
sometimes surprising, evidence regarding the role of thedtgositive definiteness
and linearity, as well as the role of triangle inequality.

2 Probabilistic kernels and SVMs

Given a feature spac¥, a set of training examplesey, ...,zxy } € X, and a function
K : X x X — R, aSVM is a discriminative classifier that constructs a maxm
margin hyperplane in a transformed feature space, defingdebfunctionk’, known
as the kernel. One interpretation of the kernel funciof;, x;) is that it measures
the similarity between two points; andz; in the feature spac&. A popular example
is the Gaussian kernel, defined BS(z;,z;) = exp(—v|z; — z;||*), which is an
example of a metric kernel based on the negative exponeheafjuare of a metric.
Under the localized data representation, each exampl@iseel to a probability
density function (defined on a space of localized featuréoverand the kernel be-
comes a measure of similarity between probability distidns. A probabilistic kernel



is thus defined as a mappidg : P x P — R, whereP is the space of probability
distributions. One example is tipeobability product kerne{PPK) [5]

K, (p.q) = /Q p(x)q(z)P da 1)

wherep is a parameter ang(z) andg(z) are probability distributions defined on the
spacef2. In [5], the PPK is proven to be trivially positive definiteh& PPK has two
interesting special cases. The first, obtained with 1/2, is theBhattacharyya kernel

Ki(p,q) = /Q Vp(@)Va(z)de )

The second, obtained with = 1, is theexpected likelihood kerndbr correlation
kerne), which measures the correlation between the two distdhat

Ki(p.q) = /Qp<x>q<ar>da:. 3)

While the PPK has a closed-form solution for distributiomghie exponential family
[5], a closed-form solution for mixture distributions ordyists wherp = 1 (the linear
case). Hence, the correlation kernel has the appeal tlatd@mputationally efficient
on mixture distributions. This is an important attributecg many models of interest
can be seen as mixtures or mixture extensions [5]. Howelrercorrelation kernel
suffers from two serious problems: 1) when the dimensibyafiS2 is large, the kernel
values are badly scaled; and 2) it is unnormalized in theestirag the auto-correlation
of a probability distribution can take a wide range of valueShese two problems
frequently lead to kernel matrices that are ill-conditione

The limitations of the correlation kernel can be avoided bynmalizing the corre-
lation function, leading to theormalized correlation kernel

Jo p(x)q(x)dx
Kn(p.q) =
Y \/jQ p(x)Qd:c\/fQ q(x)%dx

which can be shown to be positive definite with a proof simitathat of [5]. This
kernel has a closed-form solution for mixture distribuiomhenever the same holds
for the corresponding mixture components. Noting tRatp, ¢) is itself a valid inner
product between functions, i.&4 = (p(z), ¢(x))q, where

(4)

(o) a(eNa = [ plola(e)ds, ©)
Q

the correlation kernel can be seen as the extension (to Hee sy probability distri-

butions) of the linear kernely, (z;, z;) = (z;,z;) = :cZTxJ wherez;, z; € R".

This enables an interesting geometric interpretation efRFPK and the normalized

correlation kernel. In particular, by rewriting

K,(p, @) = (®[p(2)], @[g(z)])a (6)

1For example, the maximum and minimum values of auto-cdioglgor the data set used in this study
was3.7346x10~ %4 and3.0314x10~96 for a feature space of 64 dimensions.
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where®[p(z)] = p(x)”, the former can be interpreted as a linear kernel in a trans-
formed feature space. The feature transformatigp(z)], is a smoothing operation
onp(x) controlled by the parametgr The functionp(z) is unsmoothed whep = 1,

and asp decreaseg(x) becomes more smoothed, eventually becoming constant when
p = 0. For the normalized correlation kernel we have

__@),d2)e
) = oyl ~ P )

i.e. the kernel computes the cosine of the angle betwéehandq(x) in the inner
product space of (5). Due to their connection to the stanliiaedr kernel we refer to
the correlation and normalized correlation kernelBraesar probabilistic kernels

3 Kernels based on divergence measures

Under the interpretation of the kernel as a measure of giityilét is possible to define
kernels based on information divergences, which are meastfidissimilarity between
probability distributions. One common measure is the th#bidak-Leibler (KL) di-
vergence
p(z)
KL(pllq :/px log —=dzx. (8)
wllo) = | p(e)log
This is a non-negative function, equal to zero whén) = ¢(x). TheKullback-Leibler
kernel[3] is obtained by exponentiating the symmetric KL divergen
Kir(p,q) = e @ELEPllO+KLP) (9)
wherea > 0 is a kernel parameter akin to the variance of the standardstauker-

nel. More generally, it is possible to create a family of ldsrby exponentiating any
divergence between two probability densities,

K(p,q) = e F@ll9 (10)

where F'(pl||q) is a non-negative function, equal to zero if and only(k) = ¢(z),
and symmetric in the argumeniér) andg(x). Note that, wherG(p||q) = /F(pl|q)
obeys the triangle inequality (i.€7(p||q) < G(p||r) + G(r||q)), F is the square of a
metric, and the kernel is a metric kernel. In the remaindehisfsection we consider
two information divergence kernels that establish corinastwith the PPK and the
family of metric kernels, and address the issue of positefiniteness.

3.1 Reényikernel

The Rényi divergence [8] is an alternative divergence meabased on a relaxed set
of the information postulates that define the Shannon entrépe Rényi divergence
of order« is defined as

Da(pllg) =

1o [ pla)a(e)' o (11)
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wherea > 0 anda # 1. The Rényi divergence is a generalization of the KL diver-
gence, and it can be shown that they are equal as 1 [8]. The Rényi kernelis
obtained by exponentiating the symmetric Rényi divergenc

Kp(p,q) = e~ Da(plle)+Dal(gllp)) (12)
= U p(x)o‘q(a:)l“dx/p(x)laq(z)adx} T 13)
Q o

Settinga = 1*7“ leads to a form similar to the PPK

p(p,q \//Q )= O‘dx/ﬂp(:v)l_aq(x)adx. (14)

It is clear from this form that, forv = 1/2, the Rényi kernel is the Bhattacharyya
kernel, which is a special case of the PPK.

The role ofa in the Rényi kernel is similar to that @fin the PPK. Both parameters
control the amount of smoothing applied to the probabiligpsities. In the case of
the PPK, bottp(x) andq(z) receive the same amount of smoothing. This constraint is
relaxed by the Rényi kernel which supports a different anb@f smoothing for each
density. Since, in the first integral of (14),z) is smoothed byr andg(x) by 1 — «,
for small« the integral is the correlation of a smoothed:) and an unsmoothed (or
slightly smoothedy(z). The second integral of (14) reverses the roles of the twe den
sities, therefore ensuring the symmetry of the kernel. Té®/Rkernel is the geometric
mean of the two correlations.

3.2 Jensen-Shannon kernel

The Jensen-Shannon (JS) divergence [9] is a measuremerttetfigv two samples,
defined by their empirical distributions, are drawn from slagne source distribution.
The JS divergence is defined as

JS(pllg) = H[Bp(x) + (1 = B)q(x)] = BH[p(x)] — (1 — ) Hg(x)] (15)

where( is a parameter andl [p = - pr x)log p(z)dz is the Shannon entropy
of p(z). Substituting forH and settmgﬁ’ = 1/2, the JS divergence becomes

T8 (plla) = 5 KLGlIr) + 5K L(allr) 16)

wherer(z) = %p(x) + %q(x). This divergence can be interpreted as the average
distance (in the KL sense) between each probability digfiobh and the average dis-
tribution, or equivalently as thdiversity [10] of two distributions with equal priors.
Using the fact that is a concave function, it can be shown that the JS divergence
is non-negative and equal to zero when)) = ¢(z). Exponentiating this divergence
measure leads to tliensen-Shannon kernel

Kys(p,q) = e /5@l 17)
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It is proven in [11] that (16) is the square of a metric from it follows that the

JS kernel is a metric kernel. Furthermore, (16) is a negalifmite kernel [12], and
by applying simple properties of positive definite kern@l3][ the JS kernel is positive
definite.

3.3 Positive definiteness

There is currently little understanding regarding the pasidefiniteness (PD) of the
KL and Rényi kernels. Nevertheless, one aspect that mddeefamily of informa-
tion divergence kernels interesting is that they can alvisymade PD by appropriate
choice of parameters. In particular, as long as no two dessit the training set are
exactly alike (zero divergence), it is always possible tkenthe kernel matrix diago-
nally dominant [14], and therefore PD, by makiagufficiently large. In the extreme,
asa — oo, the kernel matrix approaches the identity matrix. Inténgsy, the kernel
matrix is also guaranteed to be PDaas- 0, since all the entries convergeto 1. Clearly,
none of these PD extremes is desirable since they imply mgaltinhe examples alike
or making each example similar only to itself. Nevertheldisay illustrate how forc-
ing a kernel to be PD can reduce its expressiveness, andlassification accuracy.
In practice, the positive definiteness of a kernel can uguml checked by evaluat-
ing the positive definiteness of the kernel matrices obthimigh particular data sets.
For probabilistic kernels this is not always true since,ha absence of closed-form
solutions, the non positive definiteness of a kernel maisix esult from inaccurate
approximation& With regards to the kernels discussed above, we have fatdte
KL and Rényi kernels can produce matrices with negativereiglues, albeit usually
only a few and of much smaller amplitude than their positiverterparts.

4 Experiments and results

We used the COREL database to experiment with the diffemerigbilistic kernels in
an image classification task. The COREL database contaiasety/of image classes,
including landscapes, animals, underwater scenes, andigtes. We selected 15 im-
age classes from the database, each class containing 1§6snfar a total of 1500
images. Each image was represented using a localized espaéisn [1] by scanning
each color channel with an 8x8 window shifted every 4 pixédldeature vector was
created from each 192-pixel window by computing the 64 lafresjuency coefficients
of its discrete cosine transform (DCT). Finally, a mixtufeBaGaussians of diagonal
covariance was fit to the collection of DCT vectors extradtecth the image.

4.1 Experiment setup

The image database was split with 80% of the images for trgiand the remain-
ing 20% for testing. A multi-class SVM was constructed udihg 1-v-1 Max\Votes

2Even though the Bhattacharyya kernel is provably PD, we fawed it to sometimes produce kernel
matrices with negative eigenvalues, when evaluated viat&Garlo approximations.
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method [15]. Preliminary results showed it to outperfortmestmulticlass SVM meth-
ods, such as the 1-v-1 DAG-SVM or the 1-v-all SVM [15]. The S\Wdas trained
with six probabilistic kernels: the Kullback-Leibler (KLIRényi, Jensen-Shannon (JS),
Bhattacharyya (Bh), correlation (Corr), and normalizedeation (NC). Kernel pa-
rameters were selected by cross-validation, using 70%eofrtining set for training
and the remaining 30% validation. Once the best parameters found, the SVM
was trained using all the training data. For the divergdmaesed kernels (KL, Rényi,
and JS), the parameters were selected feom {210,279, ..., 24}, and additionally
for the Rényi kernelp € {0.1,0.2, ...,0.8}. The C-SVM formulation was used, with
C € {272,271 ...,212}, and the SVMs were trained and tested udibgvm [16].
All probabilistic kernels without closed-form solution weeevaluated using a Monte
Carlo approximation with 10,000 points.

Two additional classifiers were trained as baseline corapasi. The first, a stan-
dard Bayesian classifier (GMM Bayes) was trained using th& Batures generated
by the localized representation, modeling each class tiondi density as a mixture of
32 Gaussians. The second was an SVM using the image pixedaasd vector (Im-
age SVM). Each image was cropped and downsampled into ard8Bx#nbnail, and
converted into a 4752-dimensional vector by concatendtiegows of the thumbnail.
The SVM was trained with the Gaussian kernel wittselected by cross-validation
overy € {2710.279 24}, Finally, all experiments were repeated for a range of di-
mensions of the DCT space (i.e. the number of DCT coefficiesesl in the localized
representation).

4.2 Experiment results

The results of classification accuracy versus the dimerwfitine DCT space are pre-
sented in Figures 1la and 1b. Clearly, normalizing the caticai kernel improves the
classification performance significantly (improvementlodat 60% in the worst case).
Nonetheless, the non-linear probabilistic kernels (Keni; JS, and Bh) outperform
the two linear probabilistic kernels for all dimensions.€eBk results suggest that the
linear feature space of probability distributions is ngtessive enough for image clas-
sification. On the other hand, the non-linear probabilistimels induce a transformed
feature space (e.g. the Bhattacharyya and Rényi kernplg dpnsity smoothing) that
appears to improve classification significantly. In the Bicltaryya case, a direct geo-
metric interpretation is possible: the smoothing transfation expands the support of
each density, increasing the correlation with its neighbdhis improves the general-
ization of the kernel, by making it capable of capturing samfies between densities
that are close but do not have extensive overlap.

The non-linear probabilistic kernels performed similaaly seen in Figure 1b, (note
that the vertical scale is different) but the Rényi and Kkrieds appear to have slightly
better performance. The fact that the JS kernel is a metricekeloes not seem to
lead to any clear advantage in terms of classification acygulaterestingly, the per-
formance of the two provably PD kernels (JS and Bh) drop&ligas the dimension
of the DCT space increases. On the other hand, the perfomuadrtbe two non-PD
kernels (KL and Rényi) improves slightly. To further telsetimportance of positive
definiteness we examined the performance of the KL kernebirerdetail. The percent
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Figure 1: Classification accuracy versus feature space dimensiotajceall the classifiers and (b) the
non-linear probabilistic kernel SVMs, and (c) the percefthe training data used as support vectors.

Figure 2:(left) Negative eigenvalue energy and (right) classifaticcuracy versus for the KL kernel.

magnitude of negative eigenvalues was calculated for aerahgalues of:, and aver-
aged over the kernel matrices used in training. For eachevalu, the classification
accuracy was measured, usifig= 1. Figure 2 shows the plot of (left) the percent neg-
ative energy of the eigenvalues and (right) the classiticaiccuracy versus Clearly,
while the kernel matrix can be forced to be PD, the classifinaaccuracy actually
decreases. In fact, the best classifiers seem to occur wkekethel contains some
amount of negative eigenvalue energy. These results sughygoconjecture that strict
enforcement of properties such as positive definitenesgeadtisfaction of the triangle
inequality may not always lead to the best classifier peréorce.

The generalization capability of the SVM is known to be rethto the number
of support vectors used by the classifier. For example, Wabas shown (Theorem
5.2 of [17]) that the probability of error is bounded by th&aaf the number of sup-
port vectors to the number of training samples. Figure lavstibe percentage of the
training data used as support vectors by the different kerrfdhe number of support
vectors used by the KL and Rényi kernels was less than ther &trnels and stayed
approximately constant with the dimension of the DCT spddas suggests that the
generalization capability of the KL and Rényi kernels ist&ethan the other proba-
bilistic kernels, which is confirmed by the performance @srin Figures 1a and 1b.

Regarding the baseline methods, the non-linear probabiksrnels outperformed
both the image-based SVM and the GMM Bayes classifier. Thisexgected since,
for the image-based SVM, the feature space is highly vaanthe sense that two
spatially transformed versions of the same image may lig fear away in feature
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space) and the hence classification problem is more diffjtlilt For GMM Bayes
this was also expected, given the well known improved gdizaten ability of large-
margin classifiers.

Overall, the experimental results support the followingdasions: 1) linear prob-
abilistic kernels are not expressive enough for image ifieaton; 2) non-linear prob-
abilistic kernels, whether based on density smoothing anformation divergences,
are better for this task; 3) strict kernel positive definitesis not always required for
good classification results; and 4) some negative eigeavahergy does not hinder,
and can even help, classification performance.
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