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Abstract

We derive the KL divergence between dynamic textures in state space. We also de-
rive a set of recursive equations for the calculation of the Kullback-Leibler divergence
between dynamic textures in image space. The recursive equations are computationally
efficient and require less memory storage than the non-recursive counterpart.
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1 Introduction

A dynamic texture is a linear dynamical system used to model a video sequence. Since
the dynamic texture is a generative probabilistic model, the KL divergence can be used
to compute distances between different dynamic textures. In this note, we derive the
KL divergence between dynamic textures. In Section 2, we start by reviewing the
probability distributions of the dynamic texture model. In Section 3, we derive the KL
divergence between the state spaces of two dynamic textures. In Section 4, we define
the KL divergence between the image spaces of two dynamic textures, and in Section
5, we derive a set of recursive equations for efficiently computing the image space
KL divergence. The recursive equations are computationally efficient and require less
memory storage than the non-recursive counterpart.

2 Dynamic Texture Model

A dynamic texture [1] is an auto-regressive process modeled by

xt+1 = Axt + Bvt (1)

yt = Cxt + wt (2)

where, xt ∈ R
n is an n dimensional state vector, yt ∈ R

m is the m dimensional
image vector, A ∈ R

n×n is the state transition matrix, vt ∼iid N (0, Inv
) is the nv

dimensional driving process (typically, n � m and nv ≤ n) with transformation
B ∈ R

n×nv , C ∈ R
m×n is a matrix containing the principal component vectors,

wt ∼iid N (0, R) with R ∈ R
m×m is the image noise process, and x0 is the known

initial condition. Note that Bvt ∼ N (0, Q) where Q = BBT . We will also assume
that the covariance of the image noise, R, is diagonal. A dynamic texture model is
completely specified using the parameters Θ = {A, B, C, R, x0}.

2.1 Probability Density Functions

We first obtain the probability density functions associated with the dynamic texture.
In the following we will assume that x0 is constant. The state is governed by a Gauss
Markov process [2], hence the conditional probability of the state is

p(xt|xt−1) = G(xt, Axt−1, Q) (3)

=
1

√

(2π)n |Q|
e−

1

2
‖xt−Axt−1‖

2

Q (4)

where ‖x‖2

Q = xT Q−1x. Recursively substituting into the state equations, we have

xt = Atx0 +
t

∑

i=1

At−iBvi (5)
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A single state is the linear combination of Gaussian random variables, thus the proba-
bility of a single state is also Gaussian

p(xt) = N (µt, St) (6)

where

µt = Atx0 (7)

St = ASt−1A
T + Q =

t−1
∑

i=0

AiQ(Ai)T (8)

2.1.1 State Sequence Probability

Since the driving process is Gaussian, the joint probability of a state sequence is also
Gaussian. Specifically, we have

xt+k = Akxt +

k
∑

i=1

Ak−iBwt+i−1 (9)

cov(xt+k, xt) = AkSt (10)

Let xτ
1 = (x1, x2, ..., xτ ) be the sequence of τ state vectors, then the probability of xτ

1

is

p(xτ
1) = N (µ, Σ) (11)

where

µ =











µ1

µ2

...
µτ











, Σ =















S1 (AS1)
T (A2S1)

T · · · (Aτ−1S1)
T

AS1 S2 (AS2)
T · · · (Aτ−2S2)

T

A2S1 AS2 S3 · · · (Aτ−3S3)
T

...
...

...
. . .

...
Aτ−1S1 Aτ−2S2 Aτ−3S3 · · · Sτ















(12)

Alternatively, using conditional probability we have

p(xτ
1) = p(x1)

τ
∏

i=2

p(xi|xi−1) (13)

=

τ
∏

i=1

G(xi, Axi−1, Q) (14)

=
1

√

(2π)nτ |Q|τ
e−

1

2

∑τ
i=1

‖xi−Axi−1‖
2

Q (15)
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The inverse of the covariance matrix Σ can be determined in closed-form by examining
the exponent term in (15). We will first look at an example where τ = 3.

3
∑

i=1

‖xi − Axi−1‖
2

Q =

[

x2

x3

]T [

AT Q−1A −AT Q−1

−Q−1A Q−1

] [

x2

x3

]

(16)

+

[

x1

x2

]T [

AT Q−1A −AT Q−1

−Q−1A Q−1

][

x1

x2

]

+ (xT
1 Q−1x1 − 2xT

1 Q−1Ax0 + xT
0 AT Q−1Ax0)

=





x1

x2

x3





T 



AT Q−1A + Q−1 −AT Q−1 0
−Q−1A AT Q−1A + Q−1 −AT Q−1

0 −Q−1A Q−1









x1

x2

x3





− 2xT
1 Q−1Ax0 + xT

0 AT Q−1Ax0

= (xτ )T Σ−1xτ − 2bT xτ + c (17)

where

Σ−1 =





AT Q−1A + Q−1 −AT Q−1 0
−Q−1A AT Q−1A + Q−1 −AT Q−1

0 −Q−1A Q−1



 (18)

bT =
[

xT
0 AT Q−1 0 0

]

(19)

c = xT
0 AT Q−1Ax0 (20)

By simply multiplying Σ−1 with Σ from (12) (or generally, by recursively taking the
block matrix inverse of Σ−1) it is easy to verify that Σ−1 is indeed the inverse of Σ.
Completing the square on (17) we have

3
∑

i=1

‖xi − Axi−1‖
2

Q = ‖xτ − µ‖2

Σ
+ c − µT Σ−1µ (21)

where µ = Σb =





Ax0

A2x0

A3x0



 and c − µT Σ̂−1µ = 0, yielding

3
∑

i=1

‖xi − Axi−1‖
2

Q = (xτ − µ)T Σ̂−1(xτ − µ) (22)

Hence, we have reduced the product of Gaussians in (15) into a single Gaussian and
have thus found a closed-form solution to the inverse of the covariance matrix. Note
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that this also implies that |Σ| = |Q|τ . In general, the inverse of the covariance matrix
is the block Toeplitz matrix,

Σ−1 =

















s1 sT
2 0 · · · 0

s2 s1 sT
2 · · · 0

0 s2

. . .
. . . 0

...
...

. . . s1 sT
2

0 0 0 s2 Q−1

















(23)

where

s1 = Q−1 + AT Q−1A (24)

s2 = −Q−1A (25)

Thus, the inverse of the covariance matrix of the state sequence probability is easily
computed, thereby avoiding the inversion of a potentially very large matrix.

2.1.2 Image Sequence Probability

Let yτ
1 = (y1, y2, ..., yτ ) be the sequence of τ image vectors, then the probability of yτ

1

is

p(yτ
1 ) = N (γ, Φ) (26)

where

γ = Cµ, Φ = CΣC
T + R (27)

C =











C 0 · · · 0
0 C · · · 0
...

...
. . . 0

0 0 0 C











, R =











R 0 · · · 0
0 R · · · 0
...

...
. . . 0

0 0 0 R











(28)

Unfortunately, yτ
1 is mτ -dimensional, where m is the number of pixels in the image

and τ is the length of the image sequence, thus direct evaluation is computationally
intractable. For example, suppose we have an image patch of 48 × 48 pixels over
20 frames, then the sequence vector y20

1 will be 46,080 dimensional. The covariance
matrix of the Gaussian will have over 2 billion elements, requiring 15.8 GB using
double precision floating point.

3 KL Divergence between Dynamic Textures in State
Space

The KL divergence rate between two random processes with distributions, p(X) and
q(X) over X = (x1, x2, . . .), is defined as

D(p(X) ‖q(X) ) = lim
t→∞

1

τ
D(p(xτ

1) ‖q(xτ
1) ) . (29)
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Given that p(x) and q(x) are distributions of Markov processes, (29) can be simplified
using the chain rule of divergence [4],

D(p(xτ
1) ‖q(xτ

1) ) = D(p(x1) ‖q(x1) ) +
τ

∑

i=2

D(p(xi|xi−1) ‖q(xi|xi−1) ) (30)

Let p(xτ
1) and q(xτ

1) be the probability distributions of the state sequence xτ
1 = (x1, · · · , xτ )

of two dynamic textures parameterized by (A1, Q1, x01) and (A2, Q2, x02). The KL
divergence of the initial state vector is

D(p(x1) ‖q(x1) ) =
1

2
‖A1x01 − A2x02‖

2

Q2
+

1

2
log

|Q2|

|Q1|
+

1

2
tr(Q−1

2 Q1) −
n

2
(31)

and the conditional KL term is

D(p(xi|xi−1) ‖q(xi|xi−1) )

=

∫

p(xi−1)

∫

p(xi|xi−1) log
p(xi|xi−1)

q(xi|xi−1)
dxidxi−1

=

∫

p(xi−1)

∫

G(xi, A1xi−1, Q1) log
G(xi, A1xi−1, Q1)

G(xi, A2xi−1, Q2)
dxidxi−1

=

∫

p(xi−1)
1

2

[

‖(A1 − A2)xi−1‖
2

Q2
+ log

|Q2|

|Q1|
+ tr(Q−1

2 Q1) − n

]

dxi−1

=
1

2

[

tr(ĀT Q−1
2 Ā(Si−1 + µi−1µ

T
i−1)) + log

|Q2|

|Q1|
+ tr(Q−1

2 Q1) − n

]

where Ā = A1 − A2, and in the last line we have used the property that if p(x) has
mean µ and covariance Σ,

∫

p(x) ‖Ax‖2

B dx = E[xT AT B−1Ax]

= E[tr(AT B−1AxxT ]

= tr(AT B−1AE[xxT ])

= tr(AT B−1A(Σ + µµT ))

Finally, summing over the conditional KL terms, the KL divergence on the RHS of
(29) is

1

τ
D(p(xτ

1) ‖q(xτ
1 ) ) = (32)
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1

2

[

log
|Q2|

|Q1|
+ tr(Q−1

2 Q1) − n +
1

τ
‖A1x01 − A2x02‖

2

Q2

+
1

τ

τ
∑

i=2

tr
(

ĀT Q−1
2 Ā(Si−1 + µi−1µ

T
i−1)

)

]

where Ā = A1 − A2, and Si−1 and µi−1 are the covariance and mean associated with
the state xi−1 of the first dynamic texture.

4 KL Divergence between Dynamic Textures in Image
Space

Let p1(y
τ
1 ) and p2(y

τ
1 ) be the probability density functions of an image sequence for

two texture models parameterized by Θ1 and Θ2, respectively. The KL divergence rate
[3] between the two textures models is defined as,

D(p1 ‖p2 ) = lim
τ→∞

1

τ
D(p1(y

τ
1 ) ‖p2(y

τ
1 ) ) (33)

Since p1 and p2 are both Gaussian, there is a closed-form solution of the KL divergence
for length τ given by

D(p1 ‖p2 ) =
1

2

[

log
|Φ2|

|Φ1|
+ tr

(

Φ−1
2 Φ1

)

+ ‖γ1 − γ2‖
2

Φ2
− mτ

]

(34)

Direct evaluation of the KL is computationally intractable, since the formula depends
on Φ1 and Φ2, which are both very large covariance matrices.

5 Recursive Evaluation of KL Divergence

While direct computation of the image covariance matrix Φ is intractable, it is possible
to rewrite the terms of the KL divergence into a recursive form by using several matrix
identities. The resulting formulation reduces the required memory and is computation-
ally efficient.

We will now derive the recursive equations for each of the terms in KL divergence
equation (34) for time τ given time τ−1. We will refer to matrices (and vectors) at time
τ as Aτ

i , and at time τ − 1 as Aτ−1

i , where i is the index for p1 or p2. For simplicity,
we will also refer to the image at the current time step τ as y, and the sequence of
preceding τ − 1 images as Y . The covariance and means of p1 and p2 can be defined
recursively as

γτ
1 =

[

γ1Y

γ1y

]

, Φτ
1 =

[

Φ1Y Y φ1Y y

φ1yY φ1yy

]

(35)

γτ
2 =

[

γ2Y

γ2y

]

, Φτ
2 =

[

φ2Y Y φ2Y y

φ2yY φ2yy

]

(36)
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Similarly, we can define µ1x, µ1X , Σ1XX , Σ1Xx, Σ1xX , Σ1xx for the probability of a
state sequence under p1, and likewise for p2.

5.1 Mahalanobis Distance Term

For the Mahalanobis distance, we have the following recursion,

‖γτ
1 − γτ

2 ‖
2

Φτ
2

=
∥

∥γτ−1
1 − γτ−1

2

∥

∥

2

Φ
τ−1

2

+ ‖z‖2

Φ̂2
(37)

where ‖z‖2

Φ̂2
is the update term with

z = φ2yY (Φτ−1
2 )−1(γτ−1

1 − γτ−1
2 ) − (γ1y − γ2y) (38)

Φ̂2 = φ2yy − φ2yY (Φτ−1
2 )−1φ2Y y (39)

Substituting for the image covariance (in terms of the state covariance) and using the
matrix inversion lemma,

φ2yY (Φτ−1
2 )−1 = C2Σ2xXC

T
2 (R−1

2 −R
−1
2 C2(β

τ−1
2 )−1

C
T
2 R

−1
2 ) (40)

= C2Σ2xX∆2C
T
2 R

−1
2 (41)

with

βτ−1
2 = (Στ−1

2 )−1 + C
T
2 R

−1
2 C2 (42)

∆2 = I − (CT
2 R

−1
2 C2)(β

τ−1
2 )−1 (43)

The update covariance matrix becomes

Φ̂2 = (C2Σ2xxCT
2 + R2) − (C2Σ2xX∆2C

T
2 R

−1
2 )C2Σ2XxCT

2 (44)

= C2Γ2C
T
2 + R2 (45)

where

Γ2 = Σ2xx − Σ2xX∆2(C
T
2 R

−1
2 C2)Σ2Xx (46)

and the inverse of Φ̂2 can be taken by using the matrix inversion lemma,

Φ̂−1
2 = R−1

2 − R−1
2 C2Γ̂

−1
2 CT

2 R−1
2 (47)

Γ̂2 = Γ−1
2 + CT

2 R−1
2 C2 (48)

Finally, the update to the Mahalanobis distance is computed as

z = C2Σ2xX∆2(C
T
2 R

−1
2 C1µ

τ−1
1 −C

T
2 R

−1
2 C2µ

τ−1
2 ) (49)

− C1µ1x + C2µ2x

‖z‖2

Φ̂2
= zT R−1

2 z − (zT R−1
2 C2)Γ̂

−1
2 (CT

2 R−1
2 z) (50)
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The computation of the distance requires the inverse of Γ2 and Γ̂2, both n×n matrices,
and β2, an n(τ − 1) × n(τ − 1) matrix. Fortunately, the inverse of the β2 matrix can
be computed efficiently using recursion.

5.2 Inverse of Beta Matrix

We will now derive a recursive expression for inverting β. Let βτ = (Στ )−1 +
C

T
R

−1
C. The inverse of Στ can be expressed recursively,

(Στ )−1 =





s1 sT
2 0

s2

0
(Στ−1)−1



 (51)

and thus,

βτ =





s1 + CT R−1C sT
2 0

s2

0
βτ−1



 (52)

where s1 and s2 are defined in (24) and (25). Taking the inverse of the block matrix,
we have

(βτ )−1 =

[

0 0
0 (βτ−1)−1

]

+

[

I

Uτ

]

V −1
τ

[

I UT
τ

]

(53)

=

[

V −1
τ V −1

τ UT
τ

UτV −1
τ (βτ−1)−1 + UτV −1

τ UT
τ

]

(54)

where

Uτ = −(βτ−1)−1

[

s2

0

]

= −

[

V −1
τ−1s2

Uτ−1V
−1
τ−1s2

]

(55)

Vτ = s1 + CT R−1C −
[

sT
2 0

]

(βτ−1)−1

[

s2

0

]

(56)

= s1 + CT R−1C − sT
2 V −1

τ−1s2 (57)

with initial conditions U2 = −(β1)−1s2 and V2 = s1 + CT R−1C − sT
2 (β1)−1s2 and

β1 = Q + CT R−1C. The only matrices requiring inversion are Vτ and β1, both n×n

matrices.

5.3 Determinant Term

We will now derive a recursive equation to compute the determinant of Φτ
2 . Taking the

determinant of the block matrix in (36),

log |Φτ
2 | = log

∣

∣Φτ−1
2

∣

∣ + log
∣

∣φ2yy − φ2yY (Φτ−1
2 )−1φ2Y y

∣

∣ (58)
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Looking at the update term, we have

log
∣

∣φ2yy − φ2yY (Φτ−1
2 )−1φ2Y y

∣

∣ = log
∣

∣

∣
Φ̂2

∣

∣

∣
(59)

= log
∣

∣C2Γ2C
T
2 + R2

∣

∣ (60)

The determinant of Φτ
1 can be computed in a similar manner. As is, the update term

requires the computation of the determinant of a m × m matrix, which can still be a
daunting task. Under the assumption that the image noise is iid, the amount of compu-
tation reduces further.

5.3.1 Evaluation of Determinant with iid image noise

We will assume that the noise of the image is iid, i.e. R = σ2I , and that the covariance
matrix is of the form Φ = CΣCT + σ2I , with Σ ∈ R

n×n, C ∈ R
m×n and CT C = I .

Let C ′ be a m × m orthonormal matrix such that C ′ = [C X ], where X is the matrix

of the remaining orthonormal basis vectors. Let Σ′ =

[

Σ 0
0 0

]

, then we have

Φ = CΣCT + σ2I (61)

= C ′Σ′C ′T + σ2I (62)

We will now calculate the determinant of (62) by simultaneously diagonalizing the two
terms of the sum. Let Σ′ = V ΛV T be the eigen-decomposition of Σ′, i.e. V is the
matrix of eigenvectors where V T V = I , and Λ = diag(λ1, ..., λnτ , 0, ..., 0) is the
diagonal matrix of eigenvalues, where λi are the eigenvalues of Σ.

C ′Σ′C ′T + σ2I = C ′V ΛV T C ′T + σ2I (63)

Let A = C ′V , and premultiply the RHS by AT and postmultiply by A,

AT (C ′V ΛV T C ′T + σ2I)A = Λ + σ2I (64)

log
∣

∣AT ΦA
∣

∣ = log
∣

∣Λ + σ2I
∣

∣ (65)

log |Φ| = log

∣

∣

∣

∣

σ2

(

1

σ2
Λ + I

)∣

∣

∣

∣

(66)

= log

∣

∣

∣

∣

1

σ2
Λ + I

∣

∣

∣

∣

+ m log σ2 (67)

Where in the third line we have used the fact that |A| = 1 because A is orthonormal.
Noting that the determinant of a diagonal matrix is the product of the diagonal,

log |Φ| =
n

∑

i=1

log

(

λi

σ2
+ 1

)

+ m log σ2 (68)
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Thus the problem of finding the determinant of a m × m covariance matrix is reduced
to that of finding the n eigenvalues of Σ when the R is an iid covariance matrix.

5.4 Trace Term

The trace term of the KL divergence can be reduced by using the matrix inversion
lemma and some simple manipulation.

tr
[

(Φτ
2)−1Φτ

1

]

= tr
[

R
−1
2 −R

−1
2 C2((Σ

τ
2)−1 + C

T
2 R

−1
2 C2)

−1
C

T
2 R

−1
2

]

Φτ
1(69)

= tr[R−1
2 Φτ

1 ] − tr
[

(βτ
2 )−1

C
T
2 R

−1
2 Φτ

1R
−1
2 C2

]

(70)

= tr[R−1
2 (C1Σ

τ
1C

T
1 + R1)] (71)

− tr[(βτ
2 )−1

C
T
2 R

−1
2 (C1Σ

τ
1C

T
1 + R1)R

−1
2 C2]

Finally, the trace term becomes,

tr
[

(Φτ
2)−1Φτ

1

]

= tr[Στ
1(CT

1 R
−1
2 C1)] + tr[R−1

2 R1] (72)

− tr[(βτ
2 )−1(CT

2 R
−1
2 R1R

−1
2 C2)]

− tr[(βτ
2 )−1(CT

2 R
−1
2 C1)Σ

τ
1(CT

1 R
−1
2 C2)]

The first three terms of the trace can be computed recursively. Let,

ατ = tr[Στ
1(CT

1 R
−1
2 C1)] + tr[R−1

2 R1] − tr[(βτ
2 )−1(CT

2 R
−1
2 R1R

−1
2 C2)] (73)

Then, the recursion is,

ατ = tr[Σ1xx(CT
1 R−1

2 C1)] + tr[R−1
2 R1] − tr[V −1

τ (CT
2 R−1

2 R1R
−1
2 C2)] (74)

− tr[V −1
τ UT

τ (CT
2 R−1

2 R1R
−1
2 C2)Uτ ] + ατ−1

The trace term is then computed as

tr
[

(Φτ
2)−1Φ1

]

= ατ − tr[(βτ
2 )−1Ψτ ] (75)

where,

Ψτ =

[

Ψτ−1 (CT
2 R

−1
2 C1)Σ1Xx(CT

1 R−1
2 C2)

(CT
2 R−1

2 C1)Σ1xX(CT
1 R

−1
2 C2) (CT

2 R−1
2 C1)Σ1xx(CT

1 R−1
2 C2)

]

(76)

Note that βτ
2 and Ψτ are symmetric matrices with the same size, thus the trace of their

product is simply the sum of the entries of the Hadamard product.
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5.5 KL Divergence with iid Noise Assumption

If the image noise can be modeled as a iid Gaussian, i.e R1 = σ2
1I and R2 = σ2

2I ,
some of the terms in the KL calculation simplify because C1 and C2 are matrices of
orthonormal vectors. Specifically, the simplified equations are

z =
1

σ2
2

C2Σ2xX∆2(C
T
2 C1µ

τ−1
1 − µτ−1

2 ) − C1µ1x + C2µ2x (77)

βτ
2 = (Στ

2)−1 +
1

σ2
2

I (78)

∆2 = I −
1

σ2
2

(βτ
2 )−1 (79)

Γ2 = Σ2xx −
1

σ2
2

Σ2xX∆2Σ2Xx (80)

ατ =
1

σ2
2

tr[Σ1xx] + m
σ2

1

σ2
2

−
σ2

1

σ4
2

tr[V −1
τ ] −

σ2
1

σ4
2

tr[V −1
τ UT

τ Uτ ] + ατ−1 (81)

Ψτ =

[

Ψτ−1
1

σ4

2

(CT
2 C1)Σ1Xx(CT

1 C2)
1

σ4

2

(CT
2 C1)Σ1xX(CT

1 C2)
1

σ4

2

(CT
2 C1)Σ1xx(CT

1 C2)

]

(82)

Vτ = s1 +
1

σ2
2

I − sT
2 V −1

τ−1s2 (83)

A Appendix - Useful Matrix Identities

Matrix Inversion Lemma

(A−1 + V C−1V H)−1 = A − AV (C + V HAV )−1V HA (84)

Block Matrix Determinant
∣

∣

∣

∣

A B

C D

∣

∣

∣

∣

= |A|
∣

∣D − CA−1B
∣

∣ (85)

Block matrix inversion

[

A B

C D

]−1

=

[

0 0
0 D−1

]

+

[

I

−D−1C

]

Q−1
[

I −BD−1
]

(86)

Q = A − BD−1C (87)
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Mahalanobis Distance

M =

[

A B

BT D

]

(88)

P = D − BT A−1B (89)

z =

[

x

y

]

(90)

‖z‖2

M = ‖x‖2

A +
∥

∥BT A−1x − y
∥

∥

2

P
(91)
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