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Abstract

We introduce a new method to automatically annotate angbvetimages using a
vocabulary of image semantics. Our main contribution esid the use of a hierar-
chical description of the density of each of the image clagsthe database of classes.
This method has been shown to be well suited to problemsvimglarge databases
where groups of images can be combined into higher-levelggoCompared to cur-
rent methods of image annotation and retrieval, ours hagrafisantly smaller time
complexity for a better recognition performance. Spedifyjcéhe recognition com-
plexity of our system is O(CxR), where C is the number of dag®r image annota-
tions) and R is the number of image regions, while the besitei the literature are
with a system that has complexity O(TxR), where T is the nunalbéraining images.
Since the number of classes grows substantially slower timumber of training
images, our method not only scales better for larger datebsetit also processes a
test image faster. We show comparisons in terms of comp|dixite, and recognition
performance with the state-of-the-art methods proposederiiterature. The results
illustrate that our system has a superior performance ingef recognition accuracy
for significantly smaller time complexity.
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1 Introduction

Content-based image retrieval, the problem of searchiryg lamage repositories ac-
cording to their content, has been the subject of a signifiaamount of computer vi-
sion research in the recent past [15]. While early retriewahitectures were based
on the query-by-example paradigm, which formulates imageeval as the search
for the best database match to a user-provided query imagasi quickly realized
that the design of fully functional retrieval systems wotgduire support for seman-
tic queries [13]. These are systems where the database gésvae annotated with
semantic keywords, enabling the user to specify the queoutih a natural language
description of the visual concepts of interest. This reditn, combined with the cost
of manual image labeling, generated significant interetstérproblem of automatically
extracting semantic descriptors from images.

The earliest efforts in the area were directed to the radigskraction of specific
semantics, e.g. differentiating indoor from outdoor seefi], cities from land-
scapes [17], and detecting trees [8], horses [6], or bugkl[i1], among others. These
efforts posed the problem of semantics extraction as onepergised learning: a set
of training images with and without the concept of intereaswollected and a binary
classifier trained to detect the concept of interest. Thesdiar was then applied to all
database of images which were, in this way, annotated wihere to the presence or
absence of the concept. Since each classifier is traineé fotre-vs-all” (OVA) mode
(concept of interest vs everything else), we refer to thimaatic labeling framework
assupervised OVA.

More recently, there has been an effort to solve the proléts full generality, by
resorting to unsupervised learning [1, 5, 2, 14, 7]. Thedidsia is to introduce a set of
latent variables that encode hidden states of the worldrevbach state defines a joint
distribution on the space of semantic keywords and imageaxamce descriptors (in
the form of local features computed over image neighborBpdauring training, a set
of labels is assigned to each image, the image is segmertitea dollection of regions
(either through a block-based decomposition [3, 14, 10hosugh traditional image
segmentation mathods [1, 2, 5, 9]), and an unsuperviseditepalgorithm is run over
the entire database to estimate the joint density of wordsvasual features. Given a
new image to annotate, visual feature vectors are extrattiedbint probability model
is instantiated with those feature vectors, state vargadnle marginalized, and a search
for the set of labels that maximize the joint density of temtl @ppearance is carried
out. We refer to this labeling framework assupervised.

Both formulations of the semantic labeling problem haversjradvantages and
disadvantages. In generic terms, unsupervised labeluts i significantly more scal-
able (in database size and number of concepts of interast)rtg procedures, places
much weaker demands on the quality of the manual annotatéopsred to bootstrap
learning, and produces a natural ranking of keywords foh e&ev image to annotate.
On the other hand, it does not explicitly treat semanticeage classes and, therefore,
provides little guarantees that the semantic annotaticme@imal in a recognition or
retrieval sense. That is, instead of annotations that aetifee smallest probability of
retrieval error, it simply produces the ones that have ktrggnt likelihood under the
assumed mixture model.
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In this work we show that it is possible to combine the advg@saf the two formu-
lations through a slight reformulation of the supervised.ohhis consists of defining
anM -ary classification problem where each of the semantic qusad interest defines
an image class. At annotation time, these classes all ireapete for the image to
annotate, which no longer faces a sequence of independeryliests. Thisuper-
vised M -ary formulation obviously retains the classification and mtai optimality of
supervised OVA, but 1) produces a natural ordering of kegw@t annotation time,
and 2) eliminates the need to compute a “non-class” modetdch of the semantic
concepts of interest. In result, it has learning compleggyivalent to that of the un-
supervised formulation and, like the latter, places muchkee requirements on the
quality of manual labels than supervised OVA.

There are, nevertheless, two important questions regattim feasibility of the
practical implementation of the superviséd-ary formulation. The first, is that of
how to learn a probability distribution for a semantic cléssm images that are only
weakly labeled with respect to that class. That is, imagaisate labeled as containing
the semantic concept of interest, but contain no indicadtoout which image regions
are observations of that concept. The second is that of hdsata these distributions
in a computationally efficient manner while accounting frdata that is available
from each semantic class. We show that both questions camttially solved by
naive model averaging, i.e. by simply averaging all theritigtions of images labeled
as containing the semantic concept. This is shown to be kexhrsimilar to the es-
timation of the joint model underlying the unsupervisecelaiy formulation. It turns
out, however, that model averaging has major inconvenient the point of view of 1)
the quality of the density estimates obtained for the seimafdsses, and 2) the com-
putational complexity of the annotation procedure. We tiod¢ both problems can be
eliminated with recourse to a hierarchical density modeppsed in [18] for image
indexing purposes. It is shown that, by adopting this prdlstic model, it is feasible
to 1) learn semantic class densities with complexity edeivzo that of the unsuper-
vised formulation, 2) obtain semantic density estimatgsiicantly more reliable than
those available by model averaging, and 3) achieve significgreater computational
efficiency in what regards to image annotation. The methedproposed is compares
to the state-of-the-art methods of [14, 9] using the expenital setup introduced in
[5]. The results show that that the approach now proposeddheantages not only in
terms of annotation and retrieval accuracy, but also in sevhefficiency.

2 Supervised vs. Unsupervised Semantic Annotation

The goal of semantic image labeling is to, given an imAgextract, from a vocabulary
L of semantic descriptors, the set of keywords, or captienshat best describes.
Learning is based on a training et= {(Z;,w1),...,(Zp,wp)} of image-caption
pairs. The training set is said to be weakly labeled if thesabe of a keyword from
captionw; does not necessarily mean that the associated concept [essnt in
Z;. For example, an image containing “sky” may not be explididlbeled with that
keyword. This is usually the case in practical scenariogseseach image is likely to
be annotated with a small caption that only identifies theasgios deemed as most
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relevant to the labeller.

2.1 Supervised OVA Labeling

Let £ = {ws,...,w} be the vocabulary of semantic labels, or keywords,Under
the supervised OVA formulation, labeling is formulated a#ection of L. detection
problems that determine the presence/absence of the dsngeap the imageZ. Con-
sider thei*” such problem and the random variablesuch that

_ | 1, if Z contains concepb;
Yi= { 0, otherwise. (1)

Given a collection of image featuréé extracted froni, the goal is to infer the state
of Y; with smallest probability of error, for ail. This can be solved by application of
standard Bayesian decision theory, namely by declaringgheept as present if

Pxy, (x|1) Py (1) > Px}y, (x]0) Py (0) 2)

where Px |y, (x|j) is the class-conditional density alf§-(i) the prior probability for
classj € {0,1}.

Training consists of assembling a training Bgtcontaining all images labeled with
the conceptw;, a training setD, containing the remaining images, and using some
density estimation procedure to estimétg)y, (x|j) from D;, j € {0,1}. Note that
any images containing concept which are not explicitly annotated with this concept
are incorrectly assigned ®, and can compromise the classification accuracy. In this
sense, the supervise OVA formulation is not amenable to Waaing. Furthermore,
the setD is likely to be quite large when the vocabulary sizés large and the training
complexity is dominated by the complexity of learning thaedibional density fol” =
0.

Applying the process of (2) to the query imageproduces a sequence of labels
w; € {0,1},3 € {1,..., L}, and a set of posterior probabiliti¢%, x (1|x) that can
be taken as degrees of confidence on the annotation. Note&uer, that these are
posterior probabilities relative to different classifioatproblems and do not establish
a natural ordering of importance of the keywotdsas descriptors df. Nevertheless,
the binary decision regarding whether each concept is ptés¢he image or not is a
minimum probability of error decision.

2.2 Unsupervised Labeling

The basic idea underlying the unsupervised learning foatran [1, 5, 2, 14, 7] is to
introduce a variabld. that encodes hidden states of the world. Each of these states
then defines a joint distribution for keywords and imagedesg. The various methods
differ in the definition of the states of the hidden variakdeme associate a state to
each image in the database [14, 9], others associate thénimate clusters [1, 5, 2].
The overall model is of the form

S

Px w(x,w) = > Px.wiz(x, W) PL(]) (3)
=1
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whereS is the number of possible states bf X the set of feature vectors extracted
from Z and' W the vector of keywords associated with this image. Since ithia
mixture model, learning is usually based on the expectatiaimization (EM) [4]
algorithm, but the details depend on the particular defininf hidden variable and
probabilistic model adopted fdPx w (x, w).

The simplest model in this family [14, 9], which has also awkid the best results
in experimental trials, makes each image in the trainingloke a state of the latent
variable, and assumes conditional independence betwegeifaatures and keywords,
i.e.

D

Px w(x,w) = ZPX|L(X|Z)PW\L(W|1)PL(1) (4)
=1

whereD is the training set size. This enables individual estimmatb Px 7, (x|/) and
Py (wll), as is common in the probabilistic retrieval literature][1herefore elim-
inating the need to iterate the EM algorithm over the entataldase (a procedure of
large computational complexity). In this way, the trainc@mplexity is equivalent to
that of learning the conditional densities fbf = 1 in the supervised OVA formu-
lation. This is significantly smaller than the learning cdexgy of that formulation
(which, as discussed above, is dominate by the much morerdéngptask of learn-
ing the conditionals fol; = 0). The training of thePw . (w|l), I € {1,...,D}
consists of a maximum likelihood estimate based on the atinos associated with
the ** training image, and usually reduces to counting [14, 9]. eNbiat, while the
quality of the estimates improves when the image is anmbtatth all concepts that
it includes, it is possible to compensate for missing labglsising standard Bayesian
(regularized) estimates [14, 9]. Hence, the impact of wahkling is not major under
this formulation.

At annotation time, the feature vectors extracted from tnergZ are used in (3) to
obtain a function ofw that provides a natural ordering of the relevance of all jdess
captions for the query. This function can be the joint dgnsft(3) or the posterior
density

PX,W (X, W)

Py (%) ()

Py x (w[x) =

Note that, while this can be interpreted as the Bayesiarsibeciule for a classification
problem with the states W as classes, such class structure is not consistent with
the generative model of (3) which enforces a causal relglipnfrom L to W. This
leads to a very weak dependency between the observitiand classW variables,

e.g. that they are independent givérin the model of (4). Therefore, in our view,
this formulation imposes a mismatch between the classteteiosed for the purposes

of designing the probabilistic models (where the statehefitidden variable are the
dominant classes) and that used for labeling (which asshestates oW to be the

real classes). This implies that the annotation decisiomsat optimal in a minimum
probability of error sense.
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The supervised/-ary formulation now proposed addresses this problem bijcitp
making the elements of the semantic vocabulary the cladstxe d/-ary classifica-
tion problem. That is, by introducing 1) a random varialdfe which takes values in
{1,..., L}, sothatV = iif and only if x is a sample from the concept, and 2) a set
of class-conditional distributionBx |y (x|i),7 € {1,..., L} for the distribution visual
features given the semantic class. Similarly to supervi®@dl, the goal is to infer the
state oflV with smallest probability of error. Given a set of featusefom a query
imageZ this is accomplished by application of the Bayes decisida ru

i* = arg max Pxw (x[i) Pw (i) (6)

where Py (i) is a prior probability for thei** semantic class. The difference with
respect to the OVA formulation is that instead of a sequericé binary detection
problems, we now have a singlé-ary problem withZ classes.

This has several advantages. First, there is no longer atoeestimatel. non-
class distributionsY; = 0 in (1)), an operation which, as discussed above, is the
computational bottleneck of the OVA formulation. On the wary, as will be shown in
Section 4, itis possible to estimate all semantic densitigsy (x|i) with computation
equivalentto that required to estimate one density perémelgnce, the superviséd-
ary formulation has learning complexity equivalent to theer of the unsupervised
labeling approaches (4).

Second, thé*" semantic class density is estimated from a trainingsetontain-
ing all feature vectors extracted from images labeled withceptw;. While this will
be most accuracte if all images that contain the concepadgab; in their captions,
images for which this keyword is missing will simply not bensadered. If the number
of images correctly annotated is large, this is likely notrtake any practical differ-
ence. If that number is small, missing labeled images canyswe compensated for
by adopting Bayesian (regularized) estimates. In thisesghs supervised/-ary for-
mulation is equivalent to the unsupervised formulation, amiike the supervised OVA
formulation, not severely affected by weak labeling.

Finally, at annotation time, the superviséé-ary formulation provides a natural
ordering of the semantic classes, by the posterior prabatt)y|x (w|x). Unlike the
OVA case, under thd/-ary formulation these posteriors are relative to the salae c
sification problem, a problem where the semantic classepetato explain the query.
This ordering is, in fact, equivalent to that adopted by theupervised learning for-
mulation (5), but now leads to a Bayesian decision rule thahatched to the class
structure of the underlying generative model. Hence, thigcept ordering is optimal
in a minimum probability of error sense.

4 Estimation of Semantic Class Distributions

Given the collection of semantic class-conditional déesiPy, x (w|x), supervised
M-ary labeling is relatively trivial (it consists of a searfdin the solution of (6)). Two
interesting questions arise, however, in the context oitgrstimation.
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4.1 Modeling Classes Without Segmentation

So far, we have assumed that all samples in the traininf sate from concepi;. In
practice, however, this would require careful segmemadiod labeling of all training
images. While concepts such as “Indoor”, “Outdoor”, “Ctiast, or “Landscape”
tend to be holistic (i.e. the entire image is, or is not, indless), most concepts refer
to objects and other items that only cover a part of any imagg (“Bear”, “Flag”,
etc.). Hence, most images contain a combination of varionsepts. The creation of
a training seD; of feature vectors exclusively drawn from tité class would require
manual segmentation of all training images, followed byellbg of the individual
segments.

Since this is unfeasible, an interesting question is whiétli®possible to estimate
the class-conditional density from a training set compagéchages with a significant
percentage of feature vectors drawn from other classesai$wer to this question is
afirmative, a fact that is known in the machine learning éitere, where it is the basis
of so-calledmultiple instance learning.Here we provide an illustrative example of how
this principle applies to the process of learning semariéisscdensities. We assume,
for simplicity, that the training set consists of imaged ttantain three semantic con-
cepts, each with probability/3 (i.e. occupyingl /3 of the image area), and that those
concepts are Gaussian distributed, i.e. the distributfomagek is a mixture of three
Gaussians. Introducing a hidden variabléor the image number, this distribution can
be written as

3
1
PX\L(‘T“) = g Z g(l’, M£7 Ui)
i=1
The distribution over the ensemble Bftraining images is

Px(z) = Y Pxp(a|l)PL(l) (7)

l

. N ®

=1 =1

~

We next assume that one of the three components (e.g. thefdirstimplicity)
is always the density of concept, e.g. ut = 20 ando! = 3,VI, while the others
are randomly selected from a pool of distributions that cawvetuniformly distributed
meany and standard deviation Under this assumption, d3 — oo,

1 2
Px(x) = g9(95,20,3) + 3 /g(x,u,U)pu(,u)pg(a)d,udo.
While the first term is the density af the second term is an average of many Gaussians
of different mean and covariance and converges to a unifastrilslition that, in order

to integrate to one, must have very small amplitude. Hence

. 1 2K
Dlgnoo Px(x) = gg(a:, 20,3) + 5
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Figure 1:lllustrative example of the process of learning semantissldensities. Graphs (a)-
(c) show three examples of the feature distribution preseah image. Graph (d) presents the
feature distribution over 1,000 images.

with « ~ 0. Figure 1 presents a simulation of this effect, whegs [—100, 100] and
o € [0.1,10] and the ensemble contaiis000 training images. The distribution of
conceptw dominates the probability densify () when the full training ensemble is
taken into account, even though it is never dominant for anyvidual image. Note
that, because the uniform component has to integrate toitsn@mplitude decreases
exponentially with the dimension of the feature space. lemt high-dimensional
spaces, the behavior of Figure 1 (d) is observed even whenuh®er of training
images is relatively small.

4.2 Density Estimation

Given the training seP; of images containing concept, the estimation of the density
Pxw(x|i) can proceed in four different waysilirect estimation, model averaging,
naive averaging, hierarchical estimation.

Direct Estimation

Direct estimation consists of estimating the class derfgity a training set con-
taining all feature vectors from all imagesih The main disadvantage of this strategy
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is that, for classes with a sizeable number of images, theiricaset is likely to be
quite large. This creates a number of practical problengs tiee requirement for large
amounts of memory, and makes sophisticated density estimt#chniques unfeasi-
ble. One solution is to discard part of the data, but this Bogtimal in the sense that
important training cases may be lost. We have, so far, nat bek to successfully
apply this strategy.

Model Averaging

Model averaging exploits (7) to overcome the computatianahplexity of direct
estimation. It performs the estimation &%,y (x|i) in two steps. In the first step, a
density estimate is produced for each image, originatirglasnce’x, ., w (x|l,4),1 €
{1,...D} whereL is a hidden variable that indicates the image number. Thescla
density is then obtained by averaging the densities in #gsisnce

Pxw (x]i) ZPX\L w (x|, 7). 9

Note that this is equivalent to the density estimate obthuneder the unsupervised
labeling framework, if the text component of the joint déysif (3) is marginalized and
the hidden states are images (as is the case of (4)). The iiffairedce is that, while
under M -ary supervised labeling the averaging is done only overstiteof images
that belong to the semantic class, under unsupervisedighbeis done over the entire
database. This, once again, reflects the lack of classificatptimality of the later
formulation.

The direct application of (9) is feasible when the densitigs;, v (x|, ) are de-
fined over a (common) partition of the feature space. For @anif all densities
are histograms defined on a partition of the feature spadeto Q cells {X,},q =
1,---,0Q, andhq the number of feature vectors from clasthat land on cell¥, for
imagej, then the average class histogram is simply

1
"5 2l
J

However, when 1) the underlying partition is not the samedhistograms or 2)
more sophisticated models (e.g. mixture or non-paramensity estimates) are used
model averaging is not as simple.

Naive Averaging

Consider, for example, the Gauss mixture model

PX\L w X|l i Zﬂ'zlg X Mll? )7 (10)

wherer? ' is a probability mass function such theg, 7~ 1 = 1. Direct application of
(9) Ieads to

Pxw (x]7) Zw”g X ,u”, ) (11)
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i.e. aD-fold increase in the number of Gaussian components peuneixtSince, at
annotation time, this probability has to be evaluated fahesemantic class, it is clear
that straightforward model averaging will lead to an extenslow annotation process.

Mixturehierarchies

One efficient alternative to the complexity of model avenagis to adopt a hi-
erachical density estimation method first proposed in [b8]ifhage indexing. This
method is based on a mixture hierarchy which, roughly spegks a collection of
mixtures organized hierarchically. Under this hirarch@m@anization, children densi-
ties consist of different combinations of subsets of theptr components. A formal
definition is given in [18], we omit the details for brevityh& important point is that,
when the densities conform to the mixture hierarchy modés, possible to estimate
the parameters of the class mixture directly from thosdalvii for the individual im-
age mixtures, using a two-stage procedure. The first stagheinaive averaging of
(11). Assuming that each mixture hA&scomponents, this leads to an overall mixture
with DK components of parameters

{mf kS8 i=1,....D, k=1,... K. (12)

The second is an extension of the EM algorithm, which clgdtee Gaussian compo-
nents into d’-component mixture, wherg is the number of components at the class
level. Denoting by{ =, ut, ¥t} ¢t = 1,..., T the parameters of the class mixture, this

algorithm iterates between the following steps.
E-step: compute

-
(G0, e, By braeet =251
t
ok = PR L (13)
3 G0k, i, Bhyem dreee T g
whereN is a user-defined parameter (see [18] for details).
M-step: set
new Zk ht‘k
(o = SR (14)
ht-kﬂ"-c
(ue)"e = whypf, wherewl, = —-— (15)
%: Y T b
(B = Y why [+ (uf — ) (k= uh)™] (16)
Jk

Notice that the number of parameters in each image mixtuoedsrs of magnitude
smaller than the number of feature vectors in the imagefitstdnce the complexity
of estimating the class mixture parameters is negligiblemt¢ompared to that of esti-
mating the individual mixture parameters for all imagesia tlass. It follows that the
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overall training complexity is dominated by the latter tais&. only marginally supe-
rior to that of naive averaging and significantly smallemtiizat associated with direct
estimation of class densities. On the other hand, the codtplef evaluating likeli-
hoods is exactly the same as that achievable with direchatitin, and significantly
smaller than that of naive averaging.

One final interesting property of the EM steps above is they #nforce a data-
driven form of regularization which improves generalieati This regularization is
visible in (16) where the variances on the left hand-size mawver be smaller than
those on the right-hand side. We have observed that, duéstpritperty, hierarchical
class density estimates are much more reliable than thaamed with direct learning.

5 Experimental Results

In this section, we present the experimental results on trel@ata set used in [5, 9,
14]. We focused on this experimental setup since it has bestmciously adopted as a
standard way to assess annotation and retrieval perfoenétris difficult to compare
the method now proposed to others that did not adopt thip sétice it is impossible
to implement all those other methods.

The Translation Model of [5] was the first milestone in thesapé semantic anno-
tation, in the sense of demonstrating results of practit&rést. After various years
of research, and several other contributions, the bedimxiesults are, to our knowl-
edge, those presented in [14]. We therefore adopt an ei@iustrategy identical to
that used in this work. The data set used in all experimentsists of5, 000 images
from 50 Corel Stock Photo CDs, and was divided into two parts: aitngiset of4, 500
images and a test set &0 images. Each CD includes 100 images of the same topic,
and each image is associated with 1-5 keywords. Overak ther 371 keywords in the
dataset. In all cases, the YBR color space was adopted, arithtge features were
coefficients of the x 8 discrete cosine transform (DCT). Note that this is a feasete
differentthat that usedin [5, 9, 14], which consists of calexture, and shape features.

5.1 Automatic I mage Annotation

We start by assessing the performance of our model on theofasltomatic image
annotation. Given an un-annotated image, the task is toreaittcally generate a cap-
tion which is then compared to the annotation made by a hu@anilarly to [9, 14]
we define the automatic annotation to consist of the five elassder which the im-
age has largest likelihood. We then compute the recall aadigion of every word

in the test set. Given a particular semantic descriptoif there arelwy| human an-
notated images with the descriptorin the test set, and the system annotéigg:|
images with that descriptor, whefec| are correct, recall and precision are given by

— Jwcl lwe|
‘UJH| ! |’wauto‘ '

We report results obtained on the complete sex6ofwords that appear in the test
setin Table 2, where the values of recall and precision ageged over the set of test-
ing words, as suggested by [9, 14]. Also presented are sgdtrowed from [9, 14])

recall

precision =
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Table 1: Performance comparison of automatic annotation on thel @ataset. Legend: CO
= Co-occurrence, TR = translation, CRMR = CRM-rect, CRMD =NGRect-DCT, MH = Mix-
Hier

Models CO| TR | CRM | CRMR | MBRM | CRMD | MH
#wordsrecalt>0 | 19 49 107 119 122 107 137
Results on all 260 words
Mn/word Recall 0.02| 0.04| 0.19 0.23 0.25 0.22 | 0.29
Mn/word Precision| 0.03 | 0.06 | 0.16 0.22 0.24 0.21 | 0.23

Table 2:Performance comparison of automatic annotation on thel@ataset.Legend: CO =
Co-occurrence, TR = translation, CRMR = CRM-rect, CRMD = CRt-DCT, MH = Mix-
Hier

Models CO| TR | CRM | CRMR | MBRM | CRMD | MH
#wordsrecalt>0 | 19 49 107 119 122 107 137
Results on all 260 words
Mn/word Recall 0.02| 0.04| 0.19 0.23 0.25 0.22 | 0.29
Mn/word Precision| 0.03 | 0.06 | 0.16 0.22 0.24 0.21 | 0.23

obtained with various other methods under this same expatih setting. Specif-
ically, we consider: the Co-occurrence Model [12], the Btation Model [5],The
Continuous-space Relvance Model (CRM-rect)[9, 14], ardMhultiple-Bernoulli Rel-
evance Model (MBRM) [14]. The method now proposed is denbiedMix-Hier'. In
order to guarantee a fair comparison we also implemente@GRid-rect using th&z8
DCT features. These results are presented in the columnetbas 'CRM-rect-DCT’.

Ovearll, the method now proposed achieves the best perfare&Vhen compared
to the previous best results (MBRM) it exhibts a gain 6% in recall for an equivalent
level of precision. Similarly, the number of words with pids recall increases by
15%. It is also worth noting that the CRM-rect model with DCT fews, performs
slightly worse than the original CRM-rect. This indicatkattithe performance of Mix-
Hier may improve with a better set of features. We intent tgegtigate this in the
future.

Another important issue is the complexity of the annotatioocess. The com-
plexity of CRM-rectangles and MBRM i©(T' R), whereT is the number of training
images andr is the number of image regions. Compared to those methods, Mi
Hier has a significantly smaller time complexity©fC R), where C is the number of
classes (or image annotations). Assuming a fixed numbegaineR, Fig. 2 shows
how the annotation time of a test image grows for Mix-Hier &fBRM, as a func-
tion of the number of training images. In our experimentgrahe set of 500 test
images, the average annotation time was 268 seconds foHMix-and 371 seconds
for CRM-rect-DCT.
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Figure 2: Comparison of the time complexity for the annotation of a temge on the Corel
data set.

Table 3:Retrieval results on Corel.

Mean Average Precision for Corel Dataset

Models | All 260 words | Words with recalt> 0
Mix-Hier 0.31 0.49
MBRM 0.30 0.35

5.2 Image Retrieval with Single Word Queries

In this section we analize the performance of semanticenati In this case, the pre-
cision and recall measures are computed as follows. Ihth@ost similar images to
a query are retrieved, recall is the percentage of all rekewaages that are contained
in that set and precision the percentage of thehich are relevant (where relevant
means that the ground-truth annotation of the image camnthi@ query descriptor).
Once again, we adopted the experimental setup of [14]. Uthieset-up, retrieval
performance is evaluated by the mean average precisionab& sen from Table 3,
for ranked retrieval on Corel, Mix-Hier produces resultpettior to those of MBRM.
In particular, it achieves a gain @6% mean average precision on the set of words that
have positive recall.

5.3 Results: Examples

In this section we present some examples of the annotatimasiped by our system.
Fig. 3 illustrates the fact that, as reported in Table 3, Migr has a high level of
recall. Frequently, when the system annotates an imageavdéscriptor not contained
in the human-made caption, this annotation is not necégsaong. Finally, Figure 4
illustrates the performance of the system on one word gslerie
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Model ) | il o A

Human sky jet bear polar water beach buildings clothes
Annotation| plane smoke snow tundra people sunset shops street
Automatic | smoke clouds polar tundra sunset sun buildings street
Annotation | plane jet flight bear snowice | palm clouds sea| shops people skyling

= e T —— o

Model ~ i

Human grass forest coral fish mountain sky leaf flowers
Annotation cat tiger ocean reefs clouds tree petals stems
Automatic | cat tiger plants reefs coral mountain valley petals leaf
Annotation leaf grass ocean fan fish | skycloudstree | flowers lily stems

Model g 7‘%

Human sky jet sky clouds snow fox water boats
Annotation| plane smoke | formation sunset arctic waves
Automatic | plane jet smoke| sea sun sunset arctic snow coast waves boats
Annotation flight prop waves horizon polar fox ice water oahu

: =43

Model = et

Human tree restaurant water boats people street sky buildings
Annotation street statue harbor skyline cars festival street cars
Automatic | statue streettree skyline boats | street carsvillage street buildings
Annotation | buildings castle| coast shore water buildings people bridge sky arch

Model =

Human sky sun city sun water rocks coral ocean
Annotation clouds tree water cat tiger reefs
Automatic | sunseasunset| sunsunsetcity | rocks cat tiger ocean coral reefs
Annotation| clouds horizon | horizon clouds water shore fish fan

Figure 3: Semantic annotations on Corel. Comparison between alitaifyaigenerated labels and those
produced by a human subject.
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Figure 4: From top to bottom: first five ranked results for the query “miain” (top), “pool” (row 2),
“blooms” (row 3), “tiger” (row 4), “jet” (row 5), “smoke” (rav 6), “waves” (row 7), and “woman” (row 8).
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