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Abstract

We introduce a new method to automatically annotate and retrieve images using a
vocabulary of image semantics. Our main contribution resides in the use of a hierar-
chical description of the density of each of the image classes in the database of classes.
This method has been shown to be well suited to problems involving large databases
where groups of images can be combined into higher-level groups. Compared to cur-
rent methods of image annotation and retrieval, ours has a significantly smaller time
complexity for a better recognition performance. Specifically, the recognition com-
plexity of our system is O(CxR), where C is the number of classes (or image annota-
tions) and R is the number of image regions, while the best results in the literature are
with a system that has complexity O(TxR), where T is the number of training images.
Since the number of classes grows substantially slower thanthe number of training
images, our method not only scales better for larger data set, but it also processes a
test image faster. We show comparisons in terms of complexity, time, and recognition
performance with the state-of-the-art methods proposed inthe literature. The results
illustrate that our system has a superior performance in terms of recognition accuracy
for significantly smaller time complexity.
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1 Introduction

Content-based image retrieval, the problem of searching large image repositories ac-
cording to their content, has been the subject of a significant amount of computer vi-
sion research in the recent past [15]. While early retrievalarchitectures were based
on the query-by-example paradigm, which formulates image retrieval as the search
for the best database match to a user-provided query image, it was quickly realized
that the design of fully functional retrieval systems wouldrequire support for seman-
tic queries [13]. These are systems where the database of images are annotated with
semantic keywords, enabling the user to specify the query through a natural language
description of the visual concepts of interest. This realization, combined with the cost
of manual image labeling, generated significant interest inthe problem of automatically
extracting semantic descriptors from images.

The earliest efforts in the area were directed to the reliable extraction of specific
semantics, e.g. differentiating indoor from outdoor scenes [16], cities from land-
scapes [17], and detecting trees [8], horses [6], or buildings [11], among others. These
efforts posed the problem of semantics extraction as one of supervised learning: a set
of training images with and without the concept of interest was collected and a binary
classifier trained to detect the concept of interest. The classifier was then applied to all
database of images which were, in this way, annotated with respect to the presence or
absence of the concept. Since each classifier is trained in the “one-vs-all” (OVA) mode
(concept of interest vs everything else), we refer to this semantic labeling framework
assupervised OVA.

More recently, there has been an effort to solve the problem in its full generality, by
resorting to unsupervised learning [1, 5, 2, 14, 7]. The basic idea is to introduce a set of
latent variables that encode hidden states of the world, where each state defines a joint
distribution on the space of semantic keywords and image appearance descriptors (in
the form of local features computed over image neighborhoods). During training, a set
of labels is assigned to each image, the image is segmented into a collection of regions
(either through a block-based decomposition [3, 14, 10] or through traditional image
segmentation mathods [1, 2, 5, 9]), and an unsupervised learning algorithm is run over
the entire database to estimate the joint density of words and visual features. Given a
new image to annotate, visual feature vectors are extracted, the joint probability model
is instantiated with those feature vectors, state variables are marginalized, and a search
for the set of labels that maximize the joint density of text and appearance is carried
out. We refer to this labeling framework asunsupervised.

Both formulations of the semantic labeling problem have strong advantages and
disadvantages. In generic terms, unsupervised labeling leads to significantly more scal-
able (in database size and number of concepts of interest) training procedures, places
much weaker demands on the quality of the manual annotationsrequired to bootstrap
learning, and produces a natural ranking of keywords for each new image to annotate.
On the other hand, it does not explicitly treat semantics as image classes and, therefore,
provides little guarantees that the semantic annotations are optimal in a recognition or
retrieval sense. That is, instead of annotations that achieve the smallest probability of
retrieval error, it simply produces the ones that have largest joint likelihood under the
assumed mixture model.
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In this work we show that it is possible to combine the advantages of the two formu-
lations through a slight reformulation of the supervised one. This consists of defining
anM -ary classification problem where each of the semantic concepts of interest defines
an image class. At annotation time, these classes all directly compete for the image to
annotate, which no longer faces a sequence of independent binary tests. Thissuper-
vised M -ary formulation obviously retains the classification and retrieval optimality of
supervised OVA, but 1) produces a natural ordering of keywords at annotation time,
and 2) eliminates the need to compute a “non-class” model foreach of the semantic
concepts of interest. In result, it has learning complexityequivalent to that of the un-
supervised formulation and, like the latter, places much weaker requirements on the
quality of manual labels than supervised OVA.

There are, nevertheless, two important questions regarding the feasibility of the
practical implementation of the supervisedM -ary formulation. The first, is that of
how to learn a probability distribution for a semantic class, from images that are only
weakly labeled with respect to that class. That is, images that are labeled as containing
the semantic concept of interest, but contain no indicationabout which image regions
are observations of that concept. The second is that of how tolearn these distributions
in a computationally efficient manner while accounting for all data that is available
from each semantic class. We show that both questions can be partially solved by
naive model averaging, i.e. by simply averaging all the distributions of images labeled
as containing the semantic concept. This is shown to be remarkably similar to the es-
timation of the joint model underlying the unsupervised labeling formulation. It turns
out, however, that model averaging has major inconvenient from the point of view of 1)
the quality of the density estimates obtained for the semantic classes, and 2) the com-
putational complexity of the annotation procedure. We notethat both problems can be
eliminated with recourse to a hierarchical density model proposed in [18] for image
indexing purposes. It is shown that, by adopting this probabilistic model, it is feasible
to 1) learn semantic class densities with complexity equivalent to that of the unsuper-
vised formulation, 2) obtain semantic density estimates significantly more reliable than
those available by model averaging, and 3) achieve significantly greater computational
efficiency in what regards to image annotation. The method now proposed is compares
to the state-of-the-art methods of [14, 9] using the experimental setup introduced in
[5]. The results show that that the approach now proposed hasadvantages not only in
terms of annotation and retrieval accuracy, but also in terms of efficiency.

2 Supervised vs. Unsupervised Semantic Annotation

The goal of semantic image labeling is to, given an imageI, extract, from a vocabulary
L of semantic descriptors, the set of keywords, or captions,w that best describesI.
Learning is based on a training setD = {(I1,w1), . . . , (ID,wD)} of image-caption
pairs. The training set is said to be weakly labeled if the absence of a keyword from
captionwi does not necessarily mean that the associated concept is notpresent in
Ii. For example, an image containing “sky” may not be explicitly labeled with that
keyword. This is usually the case in practical scenarios, since each image is likely to
be annotated with a small caption that only identifies the semantics deemed as most
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relevant to the labeller.

2.1 Supervised OVA Labeling

Let L = {w1, . . . , wL} be the vocabulary of semantic labels, or keywords,wi. Under
the supervised OVA formulation, labeling is formulated as acollection ofL detection
problems that determine the presence/absence of the conceptswi in the imageI. Con-
sider theith such problem and the random variableYi such that

Yi =

{

1, if I contains conceptwi

0, otherwise.
(1)

Given a collection of image featuresX extracted fromI, the goal is to infer the state
of Yi with smallest probability of error, for alli. This can be solved by application of
standard Bayesian decision theory, namely by declaring theconcept as present if

PX|Yi
(x|1)PY (1) ≥ PX|Yi

(x|0)PY (0) (2)

wherePX|Yi
(x|j) is the class-conditional density andPY (i) the prior probability for

classj ∈ {0, 1}.
Training consists of assembling a training setD1 containing all images labeled with

the conceptwi, a training setD0 containing the remaining images, and using some
density estimation procedure to estimatePX|Yi

(x|j) from Dj , j ∈ {0, 1}. Note that
any images containing conceptwi which are not explicitly annotated with this concept
are incorrectly assigned toD0 and can compromise the classification accuracy. In this
sense, the supervise OVA formulation is not amenable to weaklabeling. Furthermore,
the setD0 is likely to be quite large when the vocabulary sizeL is large and the training
complexity is dominated by the complexity of learning the conditional density forY =
0.

Applying the process of (2) to the query imageI, produces a sequence of labels
ŵi ∈ {0, 1}, i ∈ {1, . . . , L}, and a set of posterior probabilitiesPYi|X(1|x) that can
be taken as degrees of confidence on the annotation. Notice, however, that these are
posterior probabilities relative to different classification problems and do not establish
a natural ordering of importance of the keywordswi as descriptors ofI. Nevertheless,
the binary decision regarding whether each concept is present in the image or not is a
minimum probability of error decision.

2.2 Unsupervised Labeling

The basic idea underlying the unsupervised learning formulation [1, 5, 2, 14, 7] is to
introduce a variableL that encodes hidden states of the world. Each of these states
then defines a joint distribution for keywords and image features. The various methods
differ in the definition of the states of the hidden variable:some associate a state to
each image in the database [14, 9], others associate them with image clusters [1, 5, 2].
The overall model is of the form

PX,W(x,w) =

S
∑

l=1

PX,W|L(x,w|l)PL(l) (3)
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whereS is the number of possible states ofL, X the set of feature vectors extracted
from I andW the vector of keywords associated with this image. Since this is a
mixture model, learning is usually based on the expectation-maximization (EM) [4]
algorithm, but the details depend on the particular definition of hidden variable and
probabilistic model adopted forPX,W(x,w).

The simplest model in this family [14, 9], which has also achieved the best results
in experimental trials, makes each image in the training database a state of the latent
variable, and assumes conditional independence between image features and keywords,
i.e.

PX,W(x,w) =

D
∑

l=1

PX|L(x|l)PW|L(w|l)PL(l) (4)

whereD is the training set size. This enables individual estimation of PX|L(x|l) and
PW|L(w|l), as is common in the probabilistic retrieval literature [15], therefore elim-
inating the need to iterate the EM algorithm over the entire database (a procedure of
large computational complexity). In this way, the trainingcomplexity is equivalent to
that of learning the conditional densities forYi = 1 in the supervised OVA formu-
lation. This is significantly smaller than the learning complexity of that formulation
(which, as discussed above, is dominate by the much more demanding task of learn-
ing the conditionals forYi = 0). The training of thePW|L(w|l), l ∈ {1, . . . , D}
consists of a maximum likelihood estimate based on the annotations associated with
the lth training image, and usually reduces to counting [14, 9]. Note that, while the
quality of the estimates improves when the image is annotated with all concepts that
it includes, it is possible to compensate for missing labelsby using standard Bayesian
(regularized) estimates [14, 9]. Hence, the impact of weak labeling is not major under
this formulation.

At annotation time, the feature vectors extracted from the queryI are used in (3) to
obtain a function ofw that provides a natural ordering of the relevance of all possible
captions for the query. This function can be the joint density of (3) or the posterior
density

PW|X(w|x) =
PX,W(x,w)

PX(x)
. (5)

Note that, while this can be interpreted as the Bayesian decision rule for a classification
problem with the states ofW as classes, such class structure is not consistent with
the generative model of (3) which enforces a causal relationship fromL to W. This
leads to a very weak dependency between the observationX and classW variables,
e.g. that they are independent givenL in the model of (4). Therefore, in our view,
this formulation imposes a mismatch between the class structure used for the purposes
of designing the probabilistic models (where the states of the hidden variable are the
dominant classes) and that used for labeling (which assume the states ofW to be the
real classes). This implies that the annotation decisions are not optimal in a minimum
probability of error sense.
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3 Supervised M-ary Labeling

The supervisedM -ary formulation now proposed addresses this problem by explicitly
making the elements of the semantic vocabulary the classes of the M -ary classifica-
tion problem. That is, by introducing 1) a random variableW , which takes values in
{1, . . . , L}, so thatW = i if and only if x is a sample from the conceptwi, and 2) a set
of class-conditional distributionsPX|W (x|i), i ∈ {1, . . . , L} for the distribution visual
features given the semantic class. Similarly to supervisedOVA, the goal is to infer the
state ofW with smallest probability of error. Given a set of featuresx from a query
imageI this is accomplished by application of the Bayes decision rule

i∗ = arg max
i

PX|W (x|i)PW (i) (6)

wherePW (i) is a prior probability for theith semantic class. The difference with
respect to the OVA formulation is that instead of a sequence of L binary detection
problems, we now have a singleM -ary problem withL classes.

This has several advantages. First, there is no longer a needto estimateL non-
class distributions (Yi = 0 in (1)), an operation which, as discussed above, is the
computational bottleneck of the OVA formulation. On the contrary, as will be shown in
Section 4, it is possible to estimate all semantic densitiesPX|W (x|i) with computation
equivalent to that required to estimate one density per image. Hence, the supervisedM -
ary formulation has learning complexity equivalent to the simpler of the unsupervised
labeling approaches (4).

Second, theith semantic class density is estimated from a training setDi contain-
ing all feature vectors extracted from images labeled with conceptwi. While this will
be most accuracte if all images that contain the concept includewi in their captions,
images for which this keyword is missing will simply not be considered. If the number
of images correctly annotated is large, this is likely not tomake any practical differ-
ence. If that number is small, missing labeled images can always be compensated for
by adopting Bayesian (regularized) estimates. In this sense, the supervisedM -ary for-
mulation is equivalent to the unsupervised formulation and, unlike the supervised OVA
formulation, not severely affected by weak labeling.

Finally, at annotation time, the supervisedM -ary formulation provides a natural
ordering of the semantic classes, by the posterior probability PW |X(w|x). Unlike the
OVA case, under theM -ary formulation these posteriors are relative to the same clas-
sification problem, a problem where the semantic classes compete to explain the query.
This ordering is, in fact, equivalent to that adopted by the unsupervised learning for-
mulation (5), but now leads to a Bayesian decision rule that is matched to the class
structure of the underlying generative model. Hence, this concept ordering is optimal
in a minimum probability of error sense.

4 Estimation of Semantic Class Distributions

Given the collection of semantic class-conditional densities PW |X(w|x), supervised
M -ary labeling is relatively trivial (it consists of a searchfor the solution of (6)). Two
interesting questions arise, however, in the context of density estimation.
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4.1 Modeling Classes Without Segmentation

So far, we have assumed that all samples in the training setDi are from conceptwi. In
practice, however, this would require careful segmentation and labeling of all training
images. While concepts such as “Indoor”, “Outdoor”, “Coastline”, or “Landscape”
tend to be holistic (i.e. the entire image is, or is not, in theclass), most concepts refer
to objects and other items that only cover a part of any image (e.g. “Bear”, “Flag”,
etc.). Hence, most images contain a combination of various concepts. The creation of
a training setDi of feature vectors exclusively drawn from theith class would require
manual segmentation of all training images, followed by labelling of the individual
segments.

Since this is unfeasible, an interesting question is whether it is possible to estimate
the class-conditional density from a training set composedof images with a significant
percentage of feature vectors drawn from other classes. Theanswer to this question is
afirmative, a fact that is known in the machine learning literature, where it is the basis
of so-calledmultiple instance learning.Here we provide an illustrative example of how
this principle applies to the process of learning semantic class densities. We assume,
for simplicity, that the training set consists of images that contain three semantic con-
cepts, each with probability1/3 (i.e. occupying1/3 of the image area), and that those
concepts are Gaussian distributed, i.e. the distribution of imagek is a mixture of three
Gaussians. Introducing a hidden variableL for the image number, this distribution can
be written as

PX|L(x|l) =
1

3

3
∑

i=1

G(x, µl
i, σ

l
i).

The distribution over the ensemble ofD training images is

PX(x) =
∑

l

PX|L(x|l)PL(l) (7)

=
1

3D

D
∑

l=1

3
∑

i=1

G(x, µl
i, σ

l
i). (8)

We next assume that one of the three components (e.g. the first, for simplicity)
is always the density of conceptw , e.g. µl

1 = 20 andσl
1 = 3, ∀l, while the others

are randomly selected from a pool of distributions that can have uniformly distributed
meanµ and standard deviationσ. Under this assumption, asD → ∞,

PX(x) =
1

3
G(x, 20, 3) +

2

3

∫

G(x, µ, σ)pµ(µ)pσ(σ)dµdσ.

While the first term is the density ofw the second term is an average of many Gaussians
of different mean and covariance and converges to a uniform distribution that, in order
to integrate to one, must have very small amplitude. Hence

lim
D→∞

PX(x) =
1

3
G(x, 20, 3) +

2κ

3
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Figure 1: Illustrative example of the process of learning semantic class densities. Graphs (a)-
(c) show three examples of the feature distribution presentin an image. Graph (d) presents the
feature distribution over 1,000 images.

with κ ∼ 0. Figure 1 presents a simulation of this effect, whenµ ∈ [−100, 100] and
σ ∈ [0.1, 10] and the ensemble contains1, 000 training images. The distribution of
conceptw dominates the probability densityPX(x) when the full training ensemble is
taken into account, even though it is never dominant for any individual image. Note
that, because the uniform component has to integrate to one,its amplitude decreases
exponentially with the dimension of the feature space. Hence, in high-dimensional
spaces, the behavior of Figure 1 (d) is observed even when thenumber of training
images is relatively small.

4.2 Density Estimation

Given the training setDi of images containing conceptwi, the estimation of the density
PX|W (x|i) can proceed in four different ways:direct estimation, model averaging,
naive averaging, hierarchical estimation.

Direct Estimation

Direct estimation consists of estimating the class densityfrom a training set con-
taining all feature vectors from all images inD. The main disadvantage of this strategy
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is that, for classes with a sizeable number of images, the training set is likely to be
quite large. This creates a number of practical problems, e.g. the requirement for large
amounts of memory, and makes sophisticated density estimation techniques unfeasi-
ble. One solution is to discard part of the data, but this is suboptimal in the sense that
important training cases may be lost. We have, so far, not been able to successfully
apply this strategy.

Model Averaging

Model averaging exploits (7) to overcome the computationalcomplexity of direct
estimation. It performs the estimation ofPX|W (x|i) in two steps. In the first step, a
density estimate is produced for each image, originating a sequencePX|L,W (x|l, i), l ∈
{1, . . .D} whereL is a hidden variable that indicates the image number. The class
density is then obtained by averaging the densities in this sequence

PX|W (x|i) =
1

D

∑

l

PX|L,W (x|l, i). (9)

Note that this is equivalent to the density estimate obtained under the unsupervised
labeling framework, if the text component of the joint density of (3) is marginalized and
the hidden states are images (as is the case of (4)). The main difference is that, while
underM -ary supervised labeling the averaging is done only over theset of images
that belong to the semantic class, under unsupervised labeling it is done over the entire
database. This, once again, reflects the lack of classification optimality of the later
formulation.

The direct application of (9) is feasible when the densitiesPX|L,W (x|l, i) are de-
fined over a (common) partition of the feature space. For example, if all densities
are histograms defined on a partition of the feature spaceX into Q cells {Xq}, q =
1, · · · , Q, andhq

i,j the number of feature vectors from classi that land on cellXq for
imagej, then the average class histogram is simply

ĥq
i =

1

D

∑

j

hq
i,j

However, when 1) the underlying partition is not the same forall histograms or 2)
more sophisticated models (e.g. mixture or non-parametricdensity estimates) are used
model averaging is not as simple.

Naive Averaging

Consider, for example, the Gauss mixture model

PX|L,W (x|l, i) =
∑

k

πk
i,lG(x, µk

i,l, Σ
k
i,l), (10)

whereπk
i,l is a probability mass function such that

∑

k πk
i,l = 1. Direct application of

(9) leads to

PX|W (x|i) =
1

D

∑

k,l

πk
i,lG(x, µk

i,l, Σ
k
i,l) (11)
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i.e. aD-fold increase in the number of Gaussian components per mixture. Since, at
annotation time, this probability has to be evaluated for each semantic class, it is clear
that straightforward model averaging will lead to an extremely slow annotation process.

Mixture hierarchies

One efficient alternative to the complexity of model averaging is to adopt a hi-
erachical density estimation method first proposed in [18] for image indexing. This
method is based on a mixture hierarchy which, roughly speaking, is a collection of
mixtures organized hierarchically. Under this hirarchical organization, children densi-
ties consist of different combinations of subsets of the parents components. A formal
definition is given in [18], we omit the details for brevity. The important point is that,
when the densities conform to the mixture hierarchy model, it is possible to estimate
the parameters of the class mixture directly from those available for the individual im-
age mixtures, using a two-stage procedure. The first stage, is the naive averaging of
(11). Assuming that each mixture hasK components, this leads to an overall mixture
with DK components of parameters

{πk
j , µk

j , Σk
j }, j = 1, . . . , D, k = 1, . . . , K. (12)

The second is an extension of the EM algorithm, which clusters the Gaussian compo-
nents into aT -component mixture, whereT is the number of components at the class
level. Denoting by{πt

c, µ
t
c, Σ

t
c}, t = 1, . . . , T the parameters of the class mixture, this

algorithm iterates between the following steps.
E-step: compute

ht
jk =

[

G(µk
j , µt

c,Σ
t
c)e

− 1

2
trace{(Σt

c)
−1

Σ
k
j }

]πk
j N

πt
c

∑

l

[

G(µk
j , µl

c,Σ
l
c)e

− 1

2
trace{(Σl

c)
−1Σk

j
}
]πk

j
N

πl
c

, (13)

whereN is a user-defined parameter (see [18] for details).
M-step: set

(πt
c)

new =

∑

jk ht
jk

PK
(14)

(µt
c)

new =
∑

jk

wt
jkµk

j , wherewt
jk =

ht
jkπk

j
∑

jk ht
jkπk

j

(15)

(Σt
c)

new =
∑

jk

wt
jk

[

Σ
k
j + (µk

j − µt
c)(µ

k
j − µt

c)
T
]

. (16)

Notice that the number of parameters in each image mixture isorders of magnitude
smaller than the number of feature vectors in the image itself. Hence the complexity
of estimating the class mixture parameters is negligible when compared to that of esti-
mating the individual mixture parameters for all images in the class. It follows that the
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overall training complexity is dominated by the latter task, i.e. only marginally supe-
rior to that of naive averaging and significantly smaller than that associated with direct
estimation of class densities. On the other hand, the complexity of evaluating likeli-
hoods is exactly the same as that achievable with direct estimation, and significantly
smaller than that of naive averaging.

One final interesting property of the EM steps above is that they enforce a data-
driven form of regularization which improves generalization. This regularization is
visible in (16) where the variances on the left hand-size cannever be smaller than
those on the right-hand side. We have observed that, due to this property, hierarchical
class density estimates are much more reliable than those obtained with direct learning.

5 Experimental Results

In this section, we present the experimental results on the Corel data set used in [5, 9,
14]. We focused on this experimental setup since it has been continuously adopted as a
standard way to assess annotation and retrieval performance. It is difficult to compare
the method now proposed to others that did not adopt this setup since it is impossible
to implement all those other methods.

The Translation Model of [5] was the first milestone in the area of semantic anno-
tation, in the sense of demonstrating results of practical interest. After various years
of research, and several other contributions, the best existing results are, to our knowl-
edge, those presented in [14]. We therefore adopt an evaluation strategy identical to
that used in this work. The data set used in all experiments consists of5, 000 images
from50 Corel Stock Photo CDs, and was divided into two parts: a training set of4, 500
images and a test set of500 images. Each CD includes 100 images of the same topic,
and each image is associated with 1-5 keywords. Overall there are 371 keywords in the
dataset. In all cases, the YBR color space was adopted, and the image features were
coefficients of the8× 8 discrete cosine transform (DCT). Note that this is a featureset
different that that used in [5, 9, 14], which consists of color, texture, and shape features.

5.1 Automatic Image Annotation

We start by assessing the performance of our model on the taskof automatic image
annotation. Given an un-annotated image, the task is to automatically generate a cap-
tion which is then compared to the annotation made by a human.Similarly to [9, 14]
we define the automatic annotation to consist of the five classes under which the im-
age has largest likelihood. We then compute the recall and precision of every word
in the test set. Given a particular semantic descriptorw, if there are|wH | human an-
notated images with the descriptorw in the test set, and the system annotates|wauto|
images with that descriptor, where|wC | are correct, recall and precision are given by
recall = |wC |

|wH | , precision = |wC |
|wauto|

.
We report results obtained on the complete set of260 words that appear in the test

set in Table 2, where the values of recall and precision are averaged over the set of test-
ing words, as suggested by [9, 14]. Also presented are results (borrowed from [9, 14])
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Table 1: Performance comparison of automatic annotation on the Corel dataset. Legend: CO
= Co-occurrence, TR = translation, CRMR = CRM-rect, CRMD = CRM-rect-DCT, MH = Mix-
Hier

Models CO TR CRM CRMR MBRM CRMD MH
#words recall> 0 19 49 107 119 122 107 137

Results on all 260 words
Mn/word Recall 0.02 0.04 0.19 0.23 0.25 0.22 0.29
Mn/word Precision 0.03 0.06 0.16 0.22 0.24 0.21 0.23

Table 2:Performance comparison of automatic annotation on the Corel dataset.Legend: CO =
Co-occurrence, TR = translation, CRMR = CRM-rect, CRMD = CRM-rect-DCT, MH = Mix-
Hier

Models CO TR CRM CRMR MBRM CRMD MH
#words recall> 0 19 49 107 119 122 107 137

Results on all 260 words
Mn/word Recall 0.02 0.04 0.19 0.23 0.25 0.22 0.29
Mn/word Precision 0.03 0.06 0.16 0.22 0.24 0.21 0.23

obtained with various other methods under this same experimental setting. Specif-
ically, we consider: the Co-occurrence Model [12], the Translation Model [5],The
Continuous-space Relvance Model (CRM-rect)[9, 14], and the Multiple-Bernoulli Rel-
evance Model (MBRM) [14]. The method now proposed is denotedby ’Mix-Hier’. In
order to guarantee a fair comparison we also implemented theCRM-rect using the8x8
DCT features. These results are presented in the column denoted as ’CRM-rect-DCT’.

Ovearll, the method now proposed achieves the best performance. When compared
to the previous best results (MBRM) it exhibts a gain of16% in recall for an equivalent
level of precision. Similarly, the number of words with positive recall increases by
15%. It is also worth noting that the CRM-rect model with DCT features, performs
slightly worse than the original CRM-rect. This indicates that the performance of Mix-
Hier may improve with a better set of features. We intent to investigate this in the
future.

Another important issue is the complexity of the annotationprocess. The com-
plexity of CRM-rectangles and MBRM isO(TR), whereT is the number of training
images andR is the number of image regions. Compared to those methods, Mix-
Hier has a significantly smaller time complexity ofO(CR), where C is the number of
classes (or image annotations). Assuming a fixed number of regionsR, Fig. 2 shows
how the annotation time of a test image grows for Mix-Hier andMBRM, as a func-
tion of the number of training images. In our experiments, over the set of 500 test
images, the average annotation time was 268 seconds for Mix-Hier, and 371 seconds
for CRM-rect-DCT.
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Figure 2: Comparison of the time complexity for the annotation of a test image on the Corel
data set.

Table 3:Retrieval results on Corel.
Mean Average Precision for Corel Dataset

Models All 260 words Words with recall> 0
Mix-Hier 0.31 0.49
MBRM 0.30 0.35

5.2 Image Retrieval with Single Word Queries

In this section we analize the performance of semantic retrieval. In this case, the pre-
cision and recall measures are computed as follows. If then most similar images to
a query are retrieved, recall is the percentage of all relevant images that are contained
in that set and precision the percentage of then which are relevant (where relevant
means that the ground-truth annotation of the image contains the query descriptor).
Once again, we adopted the experimental setup of [14]. Underthis set-up, retrieval
performance is evaluated by the mean average precision. As can be sen from Table 3,
for ranked retrieval on Corel, Mix-Hier produces results superior to those of MBRM.
In particular, it achieves a gain of40% mean average precision on the set of words that
have positive recall.

5.3 Results: Examples

In this section we present some examples of the annotations produced by our system.
Fig. 3 illustrates the fact that, as reported in Table 3, Mix-Hier has a high level of
recall. Frequently, when the system annotates an image witha descriptor not contained
in the human-made caption, this annotation is not necessarily wrong. Finally, Figure 4
illustrates the performance of the system on one word queries.
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Model
Human sky jet bear polar water beach buildings clothes

Annotation plane smoke snow tundra people sunset shops street
Automatic smoke clouds polar tundra sunset sun buildings street
Annotation plane jet flight bear snow ice palm clouds sea shops people skyline

Model
Human grass forest coral fish mountain sky leaf flowers

Annotation cat tiger ocean reefs clouds tree petals stems
Automatic cat tiger plants reefs coral mountain valley petals leaf
Annotation leaf grass ocean fan fish sky clouds tree flowers lily stems

Model
Human sky jet sky clouds snow fox water boats

Annotation plane smoke formation sunset arctic waves
Automatic plane jet smoke sea sun sunset arctic snow coast waves boats
Annotation flight prop waves horizon polar fox ice water oahu

Model
Human tree restaurant water boats people street sky buildings

Annotation street statue harbor skyline cars festival street cars
Automatic statue street tree skyline boats street cars village street buildings
Annotation buildings castle coast shore water buildings people bridge sky arch

Model
Human sky sun city sun water rocks coral ocean

Annotation clouds tree water cat tiger reefs
Automatic sun sea sunset sun sunset city rocks cat tiger ocean coral reefs
Annotation clouds horizon horizon clouds water shore fish fan

Figure 3:Semantic annotations on Corel. Comparison between automatically generated labels and those
produced by a human subject.
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Figure 4: From top to bottom: first five ranked results for the query “mountain” (top), “pool” (row 2),
“blooms” (row 3), “tiger” (row 4), “jet” (row 5), “smoke” (row 6), “waves” (row 7), and “woman” (row 8).
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