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Abstract

A novel framework, based on the statistical interpretationof boosting, is proposed
for the design of cost sensitive boosting algorithms. It is argued that, although predic-
tors produced with boosting converge to the ratio of posterior class probabilities that
also appears in Bayes decision rule, this convergence only occurs in a small neighbor-
hood of the optimal cost-insensitive classification boundary. This is due to a combi-
nation of the cost-insensitive nature of current boosting losses, and boosting’s sample
reweighing mechanism. It is then shown that convergence in the neighborhood of a
target cost-sensitive boundary can be achieved through boosting-style minimization of
extended, cost-sensitive, losses. The framework is applied to the design of specific al-
gorithms, by introduction of cost-sensitive extensions ofthe exponential and binomial
losses. Minimization of these losses leads to cost sensitive extensions of the popular
AdaBoost, RealBoost, and LogitBoost algorithms. Experimental validation, on various
UCI datasets and the computer vision problem of face detection, shows that the new
algorithms substantially improve performance over what was achievable with previous
cost-sensitive boosting approaches.
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1 Introduction

Classification problems such as fraud detection [21,41], medical diagnosis [15,20,23,
44, 46], or object detection in computer vision [42], are naturally cost sensitive [6].
In these problems the cost of missing a target is much higher than that of a false-
positive, and classifiers that are optimal under symmetric costs (such as the popular
zero-one loss) tend to under perform. The design of optimal classifiers with respect to
losses that weigh certain types of errors more heavily than others is denoted as cost-
sensitive learning [6]. Current research in this area fallsinto two main categories. The
first aims for generic procedures that can make arbitrary classifiers cost sensitive, by
resorting to Bayes risk theory or some other cost minimization strategy [4, 24, 48, 49].
The second attempts to extend particular algorithms, so as to produce cost-sensitive
generalizations.

Of interest to this work are classifiers obtained by thresholding a continuous func-
tion, here denoted as apredictor, and therefore similar to the Bayes decision rule
(BDR) [5, 45], which is well known to be optimal for both cost-insensitive and cost-
sensitive classification. In particular, we consider learning algorithms in the boosting
family [2, 8, 12, 36], such as the popular AdaBoost [8, 10], which is not cost-sensitive
but has achieved tremendous practical success in importantareas of application, such
as computer vision [43]. Like all other boosting algorithms, AdaBoost learns a predic-
tor by composing an ensemble of weak classification rules (weak learners), and relies
on a sample re-weighting mechanism to place greater emphasis on a neighborhood
of the classification boundary. This guarantees a large classification margin and good
(cost-insensitive) generalization with small amounts of training data. There are mul-
tiple interpretations for Adaboost, including those of a large margin method [33, 35],
a gradient descent procedure in the functional space of convex combinations of weak
learners [13,25,50], and a method for step-wise logistic regression [3,12], among oth-
ers [2,9,11].

This work builds on a combination of these interpretations to derive a cost-sensitive
boosting extension. We start with the observation, by Friedman et al. [12], that the
predictor which minimizes the exponential loss used by AdaBoost (and many other
boosting algorithms) is the ratio of posterior distributions that also appears in the BDR.
Given the optimality of the latter, this offers an explanation for the excellent perfor-
mance of boosted detectors in cost-insensitive classification problems. It is, however,
at odds with various empirical observations of boosting’s 1) poor cost-sensitive perfor-
mance [7, 27, 37, 38, 42], and 2) inability to produce well calibrated estimates of class
posterior probabilities [12,19,26,27,30]. We argue that this is an intrinsic limitation of
the large-margin nature of boosting: due to the emphasis (sample reweighing) on the
classification border, the predictor produced by boosting only converges to the BDR in
a small neighborhood of that border. Outside this neighborhood, it has identical sign to
the BDR (a sufficient condition for cost-insensitive classification) but does not neces-
sarily approximate it well (a necessary condition for good cost-sensitive performance).

Two conditions are identified as necessary for optimal cost-sensitive boosting: 1)
that the predictor does converge to the BDR in the neighborhood of a classification
boundary, but 2) that the latter is the target cost-sensitive boundary, rather than the
one optimal in the cost-insensitive sense. We propose that this is best accomplished
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by modifying the loss function minimized by boosting, so that boosting-style gradient
descent can satisfy the two conditions. This leads to a general framework for the cost-
sensitive extension of boosting algorithms. We introduce cost-sensitive versions of the
exponential and binomial losses, which underly some of the most popular boosting
algorithms, including AdaBoost [8], RealBoost [12, 36], and LogitBoost [12]. Cost-
sensitive extensions of these algorithms are then derived,and shown to satisfy the two
necessary conditions for cost-sensitive optimality.

Various cost-sensitive extensions of boosting have been previously proposed in the
literature, including AdaCost [7], CSB0, CSB1, CSB2 [38] asymmetric-AdaBoost [42]
and AdaC1, AdaC2, AdaC3 [37]. All of these algorithms are heuristic in nature, at-
tempting to achieve cost-sensitivity by direct manipulation of the weights and confi-
dence parameters of Adaboost. In most cases, it is not clear if, or how, these ma-
nipulations modify the loss minimized by boosting, or even how they relate to any of
the different interpretations of boosting. This is unlike the framework now proposed,
which relies on the statistical interpretation of boostingto derive cost-sensitive exten-
sions of the boosting loss. Due to this, the algorithms now proposed inherit all the
properties of classical, cost-insensitive, boosting. They simply shift boosting’s empha-
sis from the neighborhood of the cost-insensitive boundaryto the neighborhood of the
target cost-sensitive boundary.

The performance of the proposed cost-sensitive boosting algorithms is evaluated
empirically, through experiments on both synthetic classification problems (which pro-
vide insight) and standard datasets from the UCI repositoryand computer vision (face
detection). These experiments show that the algorithms do indeed possess cost sen-
sitive optimality, and can meet target detection rates without (sub-optimal) weight or
threshold manipulation. They are also shown to outperform the previously available
cost-sensitive boosting methods, consistently achievingthe best results in all experi-
ments.

The paper is organized as follows. In Section 2 we review the main principles
of cost-sensitive classification. Section 3 then presents abrief review of the stan-
dard boosting algorithms and previous attempts at cost-sensitive extensions, discussing
their limitations for optimal cost-sensitive classification. The new framework for cost-
sensitive boosting is introduced in Section 4, where the extensions of AdaBoost, Real-
Boost, and LogitBoost, are also derived. Finally, the empirical evaluation is discussed
in Section 5, and some conclusions are drawn in Section 6.

2 Cost-sensitive classification

We start by reviewing the fundamental concepts of cost-sensitive classification. Al-
though most of these apply to multi-way classification problems, in this work we only
consider the binary case, usually referred to as thedetectionproblem.

2.1 Detection

A detector, or binary classifier, is a functionh : X → {−1, 1} that maps a feature
vectorx = (x1, . . . , xN )T ∈ X ⊂ R

N into a class labely ∈ {−1, 1}. This mapping
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is implemented as
h(x) = sgn[f(x)] (1)

wheref : X → R is a predictor, andsgn[x] = 1 if x ≥ 0, andsgn[x] = −1 otherwise.
Feature vectors are samples from a random processX that induces a probability distri-
butionPX(x) onX , and labels are samples from a random variableY that induces a
probability distributionPY (y) in {−1, 1}.

The detector is optimal if it minimizes the risk

R = EX,Y [L(x, y)],

whereL(x, y) is a loss function. We consider losses of the form

L(x, y) =







0, if h(x) = y
C2 if y = −1 andh(x) = 1
C1 if y = 1 andh(x) = −1

, (2)

with Ci > 0. WhenC1 = C2 the detector is said to be cost-insensitive, otherwise
it is cost-sensitive. The three scenarios accounted byL(x, y) are denoted as correct
decisions (h(x) = y), false positives (y = −1 andh(x) = 1), and false-negatives or
misses (y = 1 andh(x) = −1).

For many cost-sensitive problems, the costsC1 andC2 are naturally specified from
domain knowledge. For example, in a fraud detection application, prior experience
dictates that there is an average cost ofC2 dollars per false positive, while a false
negative (miss) will costC1 > C2 dollars, on average. In this case, the costs are simply
the valuesC2 andC1. There are, nevertheless, other problems in which it is more
natural to specify target detection or false-positive rates than to specify costs. The two
types of problems can be addressed within a common optimal detection framework.

2.2 Optimal detection

We start by considering the case where the costsC1 andC2 are specified. In this case,
it is well known that the optimal predictor is given by the BDR[5,45], i.e.

f∗ = arg min
f

EX,Y [L(x, y)]

if and only if

f∗(x) =
PY |X(1|x)C1

PY |X(−1|x)C2
. (3)

When the specification is in terms of error rates, this result still holds, but the cost
structure (C1, C2) that meets the specified rates must be determined. This can be done
with resort to the Neyman-Pearson Lemma [29]. For example, given the specification
of detection rateξ, the optimal cost structure is the one such that

∫

H

P (x|y = 1)dx = ξ (4)
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with

H =

{

x

∣

∣

∣

∣

P (y = 1|x)

P (y = −1|x)
>

C2

C1

}

.

Note that the optimal decision rule is still the BDR, i.e. to decide for class1 if x ∈ H
(and−1 otherwise). The only difference is that, rather than specifying the costs, one
has to search for the costs that achieve the detection rate of(4). This can be done by
cross-validation. Note that, because all that matters is the ratioC1/C2, C2 can be set
to one and the search is one-dimensional.

In any case, the optimal detector can be written as

h∗
T (x) = sgn [log (f∗

0 (x))− T ] (5)

where

f∗
0 (x) =

PY |X(1|x)

PY |X(−1|x)
, (6)

is the optimal cost-insensitive predictor and

T = log
C1

C2
. (7)

Hence, for any cost structure(C1, C2), cost-sensitive optimality differs from cost-
insensitive optimality only through the thresholdT : given f∗

0 (x) all optimal cost-
sensitive rules can be obtained by simple threshold manipulation. Furthermore, from (4),
different thresholds correspond to different detection rates, and threshold manipula-
tion can produce the optimal decision functions at any desired detection (or false-
positive) rate. This is the motivation for the widespread use of receiver operating curves
(ROCs) [1,14,16,18,39], and the tuning of error rates by threshold manipulation.

2.3 Practical detection

In practice, the posterior probabilities of (6) are unknown, and a learning algorithm is
used to estimate the predictor

f̂(x) ≈ f∗
0 (x), (8)

enabling the implementation of approximately optimal cost-sensitive rules

ĥT (x) = sgn[f̂(x)− T ]. (9)

While this is a commonly used strategy to obtain cost-sensitive rules, it does not nec-
essarily guarantee good cost-sensitive performance. In fact, there are no guarantees of
the lattereven when the cost-insensitive detector is optimal, i.e. when

ĥ0(x) = sgn[f∗
0 (x)]. (10)

While the necessary and sufficient conditions for (10) are that

f̂(x) = f∗
0 (x) = 0, ∀x ∈ C (11)

sgn[f̂(x)] = sgn[f∗
0 (x)], ∀x 6∈ C, (12)
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where

C =

{

x

∣

∣

∣

∣

PY |X(1|x)

PY |X(−1|x)
= 1

}

is the optimal cost-insensitive classification boundary, the optimality of (9) requires
that

f̂(x) = f∗
0 (x) = T, ∀x ∈ CT (13)

sgn[f̂(x)− T ] = sgn[f∗
0 (x)− T ], ∀x 6∈ CT (14)

with

CT =

{

x

∣

∣

∣

∣

PY |X(1|x)

PY |X(−1|x)
= T

}

.

Hence, for anyx ∈ CT , the necessary condition for cost-sensitive optimality

f̂(x) = f∗
0 (x) (15)

is much tighter than the sufficient condition for cost-insensitive optimality

sgn[f̂(x)] = sgn[f∗
0 (x)]. (16)

It follows that threshold manipulation can only produce optimal cost-sensitive de-
tectors for all values ofT if f̂(x) = f∗

0 (x),∀x ∈ X . Since this is a much more
restrictive constraint than the necessary and sufficient conditions, (11) and (12), for
cost-insensitive optimality there is, in general, no reason for a cost-insensitive learning
algorithm to enforce it. This is, in fact, Vapnik’s argumentagainst generative solutions
to the classification problem: that there is no point in attempting to learn the optimal
predictor everywhere, when it is sufficient to do so on the classification boundary [40].
In summary, manipulating the threshold of an optimal cost-insensitive detector pro-
vides no guarantees of optimal cost-sensitive performance.

3 Boosting

We consider cost-sensitive extensions of boosting algorithms. Such algorithms learn a
predictorf(x) by linear combination of simple decision rulesGm(x), known as weak
learners [34],

f(x) =

M
∑

m=1

Gm(x). (17)

Predictor optimality is defined with respect to some loss function l[y, f(x)], such as
the exponential loss

le[y, f(x)] = EX,Y [exp(−yf(x))], (18)

or the expected negative binomial log-likelihood

lb[y
′, f(x)] = −EX,Y [y′ log(p(x)) + (1− y′) log(1− p(x))] (19)
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wherey′ = (y + 1)/2 ∈ {0, 1} is a re-parametrization ofy and

p(x) =
ef(x)

ef(x) + e−f(x)
. (20)

Learning is based on a training sample of feature vectors{xi}ni=1 and labels{yi}ni=1,
empirical estimates of these losses, and the iterative selection of weak learners. At
iterationm, a weightw(m)

i is assigned to example(xi, yi) and the sample is reweighed
so as to amplify the importance of points that are poorly classified with the current
ensemble predictor of (17). We next review some popular examples of algorithms in
this family, whose cost-sensitive extensions will be introduced in later sections. In all
these cases, boosting can be interpreted as gradient descent on a functional space of
linear combinations of weak learners, with respect to one ofthe losses above [13, 25,
50].

3.1 AdaBoost

AdaBoost [8,10] produces combinations of scaled binary classifiers

GAda
m (x) = αmgm(x), (21)

where{αm}Mm=1 is a weight sequence and{gm(x)}Mm=1 a sequence of binary rules,
gm(x) : X → {−1, 1}, usually implemented with a decision stump

gm(x) = sgn[φm(x)− tm]

whereφm(x) is a feature response (usually the projection ofx along the direction of
a basis functionφm) andtm a threshold. The ensemble predictor of (17) is learned by
gradient descent with respect to the exponential loss, for which the gradient at themth

iteration is [17,25]

gm(x) = arg min
g

n
∑

i=1

w
(m)
i [1− I(yi = g(xi))], (22)

whereI(·) is the indicator function

I(y = x) =

{

1 y = x
0 y 6= x.

(23)

αm is the optimal step size in the direction of the gradient, found by a line search with
closed-form solution

αm =
1

2
log

(

1− err(m)

err(m)

)

, (24)

where

err(m) =

n
∑

i=1

w
(m)
i [1− I(yi = gm(xi))], (25)

is the total error ofgm(x). The weights are updated according to

w
(m+1)
i = w

(m)
i e−yiG

Ada
m (xi). (26)
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3.2 RealBoost

RealBoost [12, 36] is an extension of AdaBoost that producesbetter estimates of the
optimal predictorf∗

0 (x) by using real-valued weak learners in (17). In this case, the
gradient of the exponential loss is a (re-weighted) log-odds ratio

Greal
m (x) =

1

2
log

P
(w)
Y |X(1|φm(x))

P
(w)
Y |X(−1|φm(x))

, (27)

where, as before,φm(x) is a feature response tox, and the superscriptw indicates
that the probability distribution is that of the re-weighted sample. Weights are updated
according to

w
(m+1)
i = w

(m)
i e−yiG

real
m (xi). (28)

3.3 LogitBoost

Logitboost is motivated by the following observation, initially made by Friedman et
al. [12].

Lemma 1. (Statistical interpretation of boosting.)
The lossE[exp(−yf(x))] is minimized by the symmetric logistic transform of

PY |X(1|x),

f∗
0 (x) =

1

2
log

PY |X(1|x)

PY |X(−1|x)
. (29)

Proof. See [12].

This implies that both Ada and RealBoost can be interpreted as step-wise proce-
dures for fitting an additive logistic regression model. Friedman et al. argued that this
is more naturally accomplished by step-wise minimization of the classical logistic re-
gression losses, namely the expected negative binomial log-likelihood of (19). At the
mth boosting iteration, the optimal step with respect to the binomial loss can be found
by solving a weighted least squares regression for the weak learnerGlogit

m (x) that best
fits a set of working responses

z
(m)
i =

y′
i − p(m)(xi)

p(m)(xi)(1− p(m)(xi))
,

wherep(m)(x) is the probability of (20) based on the ensemble predictor of(17) after
m− 1 iterations. The weights are

w
(m)
i = p(m)(xi)(1− p(m)(xi)). (30)
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3.4 Limitations for cost-sensitive learning

While both the minimization of the exponential and binomial losses are sufficient to ob-
tain the optimal cost-insensitive predictor of (29), we have already seen that everywhere
convergence to this predictor is not necessary to produce the optimal cost-insensitive
detector. For this, it suffices that the ensemble predictor of (17) converges to any func-
tion f̂(x) that satisfies (11) and (12). From a purely cost-insensitiveperspective it is,
thus, sensible to require a greater accuracy of the approximation inside a neighbor-
hood of the optimal cost-insensitive boundaryC than outside of it. This is exactly what
boosting does, through the example re-weighting step of (26), (28), or (30). For both
Ada and RealBoost, a simple recursion shows that, afterM iterations,

w
(M)
i

w
(0)
i

= e−yi
M
m=1

Gm(xi) = e−yif(xi),

where we have also used (17). Assuming thatf(x) satisfies the necessary condition for
cost-insensitive optimality of (11), this ratio is one along C, exponentially increasing
(with the distance to this boundary) for incorrectly classified points, and exponentially
decreasing for correctly classified points. Hence, with theexception of a (hopefully)
small number of misclassified points, the weight is concentrated on a neighborhood
N (C) of the cost-insensitive boundaryC. For LogitBoost, the weightw(M)

i is a sym-
metric function ofp(M)(xi), with maximum atp(M)(xi) = 1/2 or, from (20), at
f(xi) = 0. In fact,

w
(M)
i (xi) =

(

ef(xi) + e−f(xi)
)−2

≈ e−2sgn[f(xi)]f(xi) = e−2|f(xi)|

and the weight decays exponentially with the distance from the boundary, indepen-
dently of whether the points are correctly classified or not.

In summary, boosting assigns exponentially decaying weight to points that have
been well classified during previous iterations, in thecost-insensitivesense. These
points, which are far from the cost-insensitive boundary, are exponentially discounted
as the optimization progresses. The resulting emphasis onN (C) is a definite advantage
for the design of the cost-insensitive detector, by guaranteing a large margin and an
ensemble predictorf(x) whose zero-level set very closely approximatesC. This is
illustrated in Figure 1, where we depict the level sets of a hypothetic optimal cost-
insensitive predictorf∗

0 (x) and a hypothetic ensemble predictorf(x). Becausef∗
0 (x)

is monotonically increasing to the left ofC (and monotonically decreasing to its right),
any ensemble predictor which 1) hasC as a zero-level set, and 2) exhibits the same
monotonicity, will both 1) satisfy (11)-(12), and 2) have great generalization ability for
cost-insensitive classification.

However, this effort to maximize the margin does not guarantee that, outsideN (C),
the level sets off(x) are identical to those off∗(x). In particular, the level set
f(x) = T is significantly different from the level setf∗

0 (x) = T , the optimal cost-
sensitive boundaryCT under the cost-structure correspondent to a threshold ofT in (5).
It follows that threshold manipulation on the ensemble predictor f(x) does not lead to
the optimal cost-sensitive decision rule of (5). The inability of boosting to produce
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f0*(x)=f(x)=0

f(x)=T

f0*(x)=T

y=1

y=0

N(C)

N(C
T
)

Figure 1: Example of a detection problem where boosting produces the optimal cost-
insensitive detector but threshold manipulation does not lead to optimal cost-sensitive
detectors. The figure presents level-sets of both the optimal predictorf∗

0 (x) (solid line)
and the boosted predictorf(x) (dashed line). As iterations progress boosting empha-
sizes the minimization insideN (C). In result, while the zero level-set is optimal, the
same does not hold for other level-sets. This implies that the decision boundaries pro-
duced by threshold manipulation will be sub-optimal. Optimal cost-sensitive rules can,
however, be obtained by emphasizing the optimization in other regions, e.g.N (CT ).
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accurate estimates of the posterior probabilitiesPY |X(y|x), sometimes referred to as
calibrated probabilities, has been noted by various authors [26, 27, 30]. In [27] and
[26], this is attributed to the fact that the empirical estimate of either the exponential or
binomial losses is minimized by lettingyif(xi) grow to infinity for all training points.
When the span of the space of weak learners is rich enough to separate the training set
into the two classes, this is always possible and, if run for enough iterations, all boosting
algorithms produce a distribution of posterior probabilitiesPY |X(y|x) which is highly
concentrated in the neighborhoods of0 and1, independently of the true distribution.
Note that this does not compromise cost-insensitive optimality, but rather reinforces it,
sincef(xi) grows to∞ for positive, and to−∞ for negative examples. In summary,
boosting does not produce calibrated probabilities and will, in fact, converge to a bi-
nary posterior distribution (of values0 and1) if run sufficiently long. Independent of
the number of iterations, the probability estimates are usually not accurate enough to
guarantee acceptable cost-sensitive performance by threshold manipulation.

3.5 Prior work on cost-sensitive boosting

This limitation is well known in the boosting literature, where a number of cost-
sensitive boosting extensions have been proposed [7,37,38,42]. Since, for cost-sensitive
learning, the main problem is that boosting’s reweighing mechanism emphasizesN (C),
instead of the optimal cost-sensitive boundaryN (CT ), it has long been noted that good
cost-sensitive performance requires a modification of thismechanism. This is also sup-
ported by the intuition that, in cost-sensitive detection,examples from different classes
should be weighted differently.

A naive implementation of this intuition would be to modify the initial boosting
weights, so as to represent the asymmetry of the costs. However, because boosting
re-updates all weights at each iteration, it quickly destroys the initial asymmetry, and
the predictor obtained after convergence is usually not different from that produced
with symmetric initial conditions. A second natural strategy is to somehow change the
weight update equation. For example, one could make the updated weight equal to
a mixture of the result of (26), (28), or (30), and the initialcost-sensitive weights.
We refer to heuristics of this type as “weight manipulation”. Previously proposed
cost-sensitive boosting algorithms, such as AdaCost [7], CSB0, CSB1, CSB2 [38],
Asymmetric-AdaBoost [42], AdaC1, AdaC2, or AdaC3 [37], fall in this class. For
example, CSB2 [38] modifies the weight update rule of AdaBoost to

w
(m+1)
i = Ci · w

(m)
i e−yig

Ada
m (xi), (31)

relying on (24) for the computation ofαm.
While various justifications are available for the differentproposals for direct ma-

nipulation of boosting equations, these manipulations areessentially heuristic, and pro-
vide no guarantees of convergence to a good cost-sensitive decision rule. Furthermore,
none of the cost-sensitive extensions can be easily appliedto algorithms other than Ad-
aboost. We next introduce a framework for cost-sensitive boosting that addresses these
two limitations.
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4 Cost-sensitive boosting

The new framework is inspired by two observations. First, the unifying principle be-
hind the different boosting algorithms is that they performgradient descent [13,25,50]
with respect to losses whose minimum is the optimal cost-insensitive predictor of (29).
Second, their main limitation for cost-sensitive learningis the emphasis on the neigh-
borhood of the cost-insensitive boundaryN (C), as shown in Figure 1. We have already
noted that these two properties are interconnected. While the limitation is due to the
weight-update mechanism, simply modifying this mechanism(as discussed in the pre-
vious section) is usually not sufficient to achieve acceptable cost-sensitive performance.
Instead, boosting involves a balance between weight updates and gradient steps which
must be components of the minimization of thecommonloss. For cost-sensitive opti-
mality, this balance requires that the loss function satisfies two conditions, which we
denote as the necessary conditions for cost-sensitive optimality.

1. It is minimized by the optimal cost-sensitive predictor.

2. It leads to a weight-updating mechanism that emphasizes aneighborhood of the
cost-sensitive boundaryN (CT ).

This suggests an alternative strategy to design cost-sensitive boosting algorithms:to
modify the loss functions so that these two conditions are met. In what follows, we
show how this can be accomplished for Ada, Real and LogitBoost. The framework
could be used to derive cost-sensitive extensions of any algorithm that performs gra-
dient descent on the space of combination of weak learners, e.g. GentleBoost [12] or
AnyBoost [25]. We limit our attention to the algorithms above for reasons of brevity,
and their popularity.

4.1 Cost-sensitive losses

We start by noting that the optimal cost-sensitive detectorof (5) can be re-written as
h∗

T = sgn[log f∗
T (x)] with

f∗
T (x) =

PY |X(1|x)C1

PY |X(−1|x)C2
. (32)

Noting that the zero level-set of this predictor is the cost-sensitive boundaryCT , sug-
gests that boosting-style of gradient descent on any loss function minimized, up to a
scaling factor, byf∗

T (x) should satisfy the two necessary conditions for cost-sensitive
optimality. The following extensions of the expected exponential and binomial losses
guarantee that the first is indeed met.

Lemma 2. The losses

EX,Y

[

I(y = 1)e−y.C1f(x) + I(y = −1)e−y.C2f(x)
]

, (33)

whereI(·) is the indicator function of (23), and

−EX,Y [y′ log(pc(x)) + (1− y′) log(1− pc(x))] (34)
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Algorithm 1 Cost-sensitive AdaBoost
Input: Training setD = {(x1, y1), . . . , (xn, yn)}, wherey ∈ {1,−1} is the class
label of examplex, costsC1, C2, set of weak learners{gk(x)}Kk=1, and numberM
of weak learners in the final decision rule.
Initialization: Select uniformly distributed weights

wi =
1

2|I+|
,∀i ∈ I+, wi =

1

2|I−|
,∀i ∈ I−.

for m = {1, . . . ,M} do
for k = {1, . . . ,K} do

train a weak learner/step-size pair(gk(x);αk), by considering various thresh-
olds forgk(x). For each threshold computeα with (41) and the the resulting
loss with (40).

end for
select(gm(x), αm) as the weak learner/step-size pair of smallest loss.
update weightswi according to (39).

end for
Output: decision ruleh(x) = sgn[

∑M
m=1 αmgm(x)].

where

pc(x) =
eγf(x)+η

eγf(x)+η + e−γf(x)−η
. (35)

with

γ =
C1 + C2

2
η =

1

2
log

C2

C1
,

are minimized by the asymmetric logistic transform ofPY |X(1|x),

f(x) =
1

C1 + C2
log

P (y = 1|x)C1

P (y = y′′|x)C2
, (36)

wherey′′ = −1 for (33) andy′′ = 0 for (34).

Proof. See appendix A

We next derive cost-sensitive extensions of the boosting algorithms, by performing
gradient descent on these losses, and will later show that these extensions shift the
emphasis of the boosting weights fromN (C) toN (CT ).

4.2 Cost-sensitive AdaBoost

We start by extending Adaboost.

Theorem 3. (Cost-sensitive AdaBoost)Consider the minimization of the empirical
estimate of the asymmetric loss of (33), based on a training sample{(xi, yi)}

n
i=1, by
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gradient descent on the space,S, of functions of the form of (17) and (21), and define
two sets

I+ = {i|yi = 1} I− = {i|yi = −1}. (37)

The gradient direction and optimal step, at iterationm, are the solution of

(αm, gm) = arg min
α,g

∑

i∈I+

w
(m)
i exp(−C1αg(xi)) (38)

+
∑

i∈I−

w
(m)
i exp(C2αg(xi))

with

w
(m+1)
i =

{

w
(m)
i e−C1αmgm(xi), i ∈ I+

w
(m)
i eC2αmgm(xi), i ∈ I−.

(39)

Given the step sizeα, the gradient direction is

gm = arg min
g

[

(eC1α − e−C1α) · b + e−C1αT+ (40)

+(eC2α − e−C2α) · d + e−C2αT−
]

and the optimal step size is the solution of

2C1 · b · cosh(C1α) + 2C2 · d · cosh(C2α) = (41)

C1 · T+ · e
−C1α + C2 · T− · e

−C2α

with

T+ =
∑

i∈I+

w
(m)
i (42)

T− =
∑

i∈I−

w
(m)
i (43)

b =
∑

i∈I+

w
(m)
i [1− I(yi = g(xi))] (44)

d =
∑

i∈I−

w
(m)
i [1− I(yi = g(xi))] (45)

Proof. See appendix B
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The gradient descent iteration cycles through the weak learners, for each, solv-
ing (41). This can be done efficiently with standard scalar search procedures. In the
experiments reported in this paper, the optimalα was found in an average of6 itera-
tions of bisection search. Givenα, the loss associated with the weak learner can be
computed, and the optimal learner selected with (40). A summary of the cost-sensitive
boosting algorithm is presented in Algorithm 1. It is worth mentioning that the algo-
rithm is fully compatible with Adaboost, in the sense that itreduces to the latter when
C1 = C2 = 1.

4.3 Cost-sensitive RealBoost

We next consider the cost-sensitive extension of RealBoost.

Theorem 4. (Cost-sensitive RealBoost)Consider the minimization of the asymmetric
loss of (33), based on a training sample{(xi, yi)}

n
i=1, by gradient descent on the space,

Sr, of predictors of the form of (17) where the weak learnersGm(x) are real functions.
Given a dictionary of features{φ1(x), . . . , φK(x)}, the gradient at iterationm has the
form

Greal
m (x) = Gφk∗

(x) (46)

where the optimal feature is determined by

k∗ = arg min
k

∑

i∈I+

w
(m)
i exp(−C1Gφk

(xi)) +
∑

i∈I−

w
(m)
i exp(C2Gφk

(xi))] (47)

with weights given by

w
(m+1)
i =

{

w
(m)
i e−C1Greal

m (xi), i ∈ I+
w

(m)
i eC2Greal

m (xi), i ∈ I−,
(48)

and where

Gφ(x) =







1

C1 + C2
log

P
(w)
Y |X(1|φ(x))C1

P
(w)
Y |X(−1|φ(x))C2







. (49)

P
(w)
Y |X(y|φ(x)), y ∈ {1,−1} are estimates of the posterior probabilities for the two

classes, after the application of the feature transformationφ(x) to a sample re-weighted

according to the weightsw(m)
i .

Proof. See appendix C

The posterior probabilitiesP (w)
Y |X(y|φm(x)), y ∈ {1,−1} of (49) can be estimated

with standard techniques [5]. For example, if theφk(x) are scalar features, they can be
obtained with weighted histograms of feature responses. Standard histogram regular-
ization procedures should be used to avoid empty histogram bins. A summary of the
cost-sensitive RealBoost algorithm is presented in Algorithm 2. The algorithm is fully
compatible with RealBoost, in the sense that it reduces to the latter whenC1 = C2 = 1.
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Algorithm 2 Cost-sensitive RealBoost
Input: Training setD = {(x1, y1), . . . , (xn, yn)}, wherey ∈ {1,−1} is the class
label of examplex, costsC1, C2, and numberM of weak learners in the final deci-
sion rule.
Initialization: Select uniformly distributed weights

wi =
1

2|I+|
,∀i ∈ I+, wi =

1

2|I−|
,∀i ∈ I−.

for m = {1, . . . ,M} do
for k = {1, . . . ,K} do

compute the gradient stepGφk
(x) with (49).

end for
select the optimal direction according to (47) and set the weak learnerGreal

m (x)
according to (46).
update weightswi according to (48).

end for
Output: decision ruleh(x) = sgn[

∑M
m=1 Greal

m (x)].

4.4 Cost-sensitive LogitBoost

Finally, we consider LogitBoost.

Theorem 5. (Cost-sensitive LogitBoost)Consider the minimization of the expected
binomial loss of (34), based on a training sample{(xi, yi)}ni=1, on the spaceSr of
predictors of the form of (17) where the weak learnersGm(x) are real functions. Given
a dictionary of features{φ1(x), . . . , φK(x)}, and a predictorf (m)(x), the Newton
step at iterationm has the form

Glogit
m (x) =

1

2γ
Gφk∗

(x) (52)

whereGφ(x) = aφφ(x) + bφ is the result of the weighted regression

(aφ, bφ) = arg min
aφ,bφ

∑

i

w
(m)
i (zi − aφφ(xi)− bφ)2 (53)

with

zi =
y′

i − p
(m)
c (xi)

p
(m)
c (xi)(1− p

(m)
c (xi))

(54)

w
(m)
i = p(m)(xi)(1− p(m)(xi)), (55)

wherep
(m)
c (x) is the link function of (35), andp(m)(x) that of (20), withf(x) =

f (m)(x). The optimal feature is determined by

k∗ = arg min
k

∑

i

w
(m)
i (zi − aφk

φk(xi)− bφk
)2. (56)
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Algorithm 3 Cost-sensitive LogitBoost

Input: Training setD = {(x1, y
′
1), . . . , (xn, y′

n)}, wherey′ ∈ {0, 1} is the class
label of examplex, costsC1, C2, γ = C1+C2

2 , η = 1
2 log C2

C1
, I+ the set of examples

with label1, I− the set of examples with label0, and numberM of weak learners
in the final decision rule.
Initialization: Set uniformly distributed probabilitiesp(1)

c (xi) = p(1)(xi) = 1
2 ∀xi

andf (1)(x) = 0.
for m = {1, . . . ,M} do

compute the working responsesz
(m)
i as in (54) and weightsw(m)

i as in (55).
for k = {1, . . . ,K} do

compute the solution to the least squares problem of (53),

aφk
=
〈1〉w · 〈φk(xi)zi〉w − 〈φk(xi)〉w · 〈zi〉w
〈1〉w · 〈φ

2
k(xi)〉w − 〈φk(xi)〉

2
w

(50)

bφk
=

〈

φk(xi)
2
〉

w
· 〈zi〉w − 〈φk(xi)〉w · 〈φk(xi)zi〉w

〈1〉w · 〈φ
2
k(xi)〉w − 〈φk(xi)〉

2
w

(51)

where we have defined

〈q(xi)〉w
.
=

∑

i

w
(m)
i q(xi).

end for
select the optimal direction according to (56) and set the weak learnerGlogit

m (x)
according to (52).
setf (m+1)(x) = f (m)(x) + Glogit

m (x).
end for
Output: decision ruleh(x) = sgn[

∑M
m=1 Glogit

m (x)].

Proof. See appendix D

A summary of the cost-sensitive LogitBoost algorithm is presented in Algorithm 3.
It is instructive to compare this to a procedure commonly used to calibrate the proba-
bilities produced by large-margin classifiers, known as Platt calibration [22,30,32,47].
This procedure attempts to map the predictionf(x) ∈ [−∞, +∞] to a posterior prob-
ability p(x) ∈ [0, 1], using the link function of (35). Theγ andη parameters are
determined by gradient descent with respect to the binomialloss of (34), also used in
cost-sensitive LogitBoost. The difference is that, in Platt’s method, cost-insensitive
boosting is first used to learn the predictorf(x) and maximum likelihood is then used
to determine the parametersγ andη that best fit a cross-validation data set. On the
other hand, cost-sensitive LogitBoost uses the calibratedlink function throughout all
boosting iterations. Note that, besides requiring an additional validation set, Platt’s
method does not solve the problem of Figure 1, since the emphasis of the boosting



4.5 Cost-sensitive margins 17

component remains onN (C), not onN (CT ). We next show that the cost-sensitive
boosting algorithms introduced above do provide a solutionto this problem.

4.5 Cost-sensitive margins

We have seen, in Section 4.1, that cost-sensitive boosting algorithms should satisfy two
conditions:

• convergence to the optimal predictor of (32),

• emphasis on a neighborhood of the cost-sensitive boundaryN (CT ).

The first condition is guaranteed by the use of the losses of (33) and (34). To investigate
the second we consider the weighting mechanisms of the threealgorithms.

For both cost-sensitive Ada and RealBoost, a simple recursion shows that, afterM
iterations,

w
(M)
i

w
(0)
i

= e−yiQif(xi),

whereQi = C1 if i ∈ I+ andQi = C2 otherwise. Assuming thatf(x) converges
to the optimum of (36), this ratio is one alongCT , exponentially increasing (with the
distance to this boundary) forxi such thatf(xi)yi < 0, and exponentially decreasing
for xi such thatf(xi)yi > 0. Hence, with respect to the cost-insensitive AdaBoost
algorithm, the only difference is whether the points are on the correct side of the cost
sensitive boundaryCT . With the exception of the points which lie on the incorrect side,
all weight is concentrated on the neighborhoodN (CT ) of the cost-sensitive boundary.
For LogitBoost, the weightw(M)

i is a symmetric function ofp(M)(xi), with maximum
atp(M)(xi) = 1/2 or, from (20), atf(xi) = 0. As in the cost-insensitive case,

w
(M)
i (x) =

(

ef(xi) + e−f(xi)
)−2

≈ e−2|f(xi)|

and the weight decays exponentially with the distance from the zero-level set off(x),
independently of whether the points are correctly classified or not. The only difference
is that, asf(x) converges to (36), this zero-level set is the cost-sensitive boundaryCT .
This shows that all cost-sensitive boosting algorithms shift the margin emphasis from
N (C) toN (CT ).

5 Experimental evaluation

Two sets of experiments were designed to evaluate the cost-sensitive boosting algo-
rithms. The first was based on a simple synthetic problem, forwhich the BDR is
known, allowing explicit comparison to the optimal cost-sensitive detector. These ex-
periments aimed for insight on various properties of the proposed algorithms. The
second set was based on standard datasets, and targeted a comparison between the new
algorithms and previously proposed methods.
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5.1 Synthetic datasets

We start with a synthetic binary scalar classification problem, involving Gaussian classes
of equal varianceσ2 = 1 and meansµ− = −1 (y = −1) andµ+ = 1 (y = 1). 10K
examples were sampled per class, simulating the scenario where the class probabilities
are uniform.

5.1.1 Accuracy

To test the accuracy of the classifiers produced by cost-sensitive boosting we relied on
the following observations. First, given a cost structure(C1, C2), the boosted detector
is optimal if and only if the asymmetric logistic transform of (36) holds along the cost-
sensitive boundary, i.e. if and only ifx∗ = f−1(0) wheref(x) is the optimal predictor
of (36) andx∗ the zero-crossing of the boosted predictor. Second, from (36), this is
equivalent to

PY |X(1|x∗) =
C2

C1 + C2
, (57)

and it follows that, given cost structure and locationx∗, it is possible to infer the true
class posterior probabilities at the latter. This is equally valid for multivariate problems,
in which case the locationx∗ becomes a level set. Hence, if the boosting algorithm
produces truly optimal cost-sensitive detectors, the plotof C2

C1+C2
as a function ofx∗

should be identical to the plot of the class posterior probability PY |X(1|x∗). For the
Gaussian problem considered, it is straightforward to showthat

PY |X(1|x) =
1

1 + e−2x
, (58)

and (57) implies thatx∗ = −T/2, with T given by (7). It is therefore possible to evalu-
ate the accuracy of the boosted cost-sensitive detectors, for the entire range of(C1, C2)
by either measuring the similarity between the plots(x∗, C2

C1+C2
) and(x∗, 1

1+e−2x∗ ) or

the plots(x∗,−T
2 ) and(x∗, x∗).

These comparisons are shown on Figure 2 (a) and (b) for the detectors produced by
cost-sensitive Ada, Real, and LogitBoost. In all casesC2 = 1 andC1 was varied over
a wide range of values. For each value ofC1, boosting was run for five iterations. It
is clear that both Real and LogitBoost produce accurate cost-sensitive detectors. The
difficulties of AdaBoost are due to the restriction of the predictor to a combination of
binary functions.

5.1.2 Comparison to previous algorithms

We next considered two cases in greater detail, namely the problems with cost struc-
turesC2 = 1 andC1 ∈ {5, 20}, and compared the performance of the novel cost-
sensitive boosting algorithms to those of the algorithms discussed in Section 3.5. For
these cost structures, the perfect detector hasx∗ = −.8047 (when C1 = 5) and
x∗ = −1.4979 (whenC1 = 20). The goal was to determine if the different algo-
rithms could generate predictors with these zero-crossings, by manipulating their cost
parameters (e.g. the parameterC1 of cost-sensitive AdaBoost, which we denote byĈ1



5.1 Synthetic datasets 19

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

P
(y

=
1 

| x
)

BDR
Cost Sensitive RealBoost
Cost Sensitive AdaBoost
Cost Sensitive LogitBoost

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

X

y 
=

 x

BDR
Cost Sensitive RealBoost
Cost Sensitive AdaBoost
Cost Sensitive LogitBoost

(a) (b)

Figure 2: a) Posterior probabilityPY |X(y = 1|x) used in the BDR, and estimates
produced by cost-sensitive Ada, Logit and RealBoost. b) Comparison of the plots
(x∗,−T

2 ) and(x∗, x∗).

to avoid confusions with the true value of the cost). Figure 3compares howx∗ evolved
(as a function of boosting iteration) for cost-sensitive AdaBoost and the cost sensitive
boosting algorithms previously available in the literature. For brevity, we limit the pre-
sentation to cost-sensitive AdaBoost since, as discussed above, this is the weakest of
the new cost-sensitive boosting algorithms on this problem. In all cases, a (rather ex-
tensive) search over values of the cost parameters of each algorithm was performed, so
as to guarantee the best possible performance after50 iterations.

Despite the simplicity of the problem, this search did not produce a good solution
for most of the algorithms. As illustrated by Figure 3, four classes of behavior were
observed. Algorithms in the first class (AdaC1, AdaCost) never produced any solu-
tions other than the cost-insensitive optimalx∗ = 0. The second class consisted of
algorithms (CSB0, AdaC2, AdaC3) that never converged to anymeaningful solution.
Algorithms in the third class (CSB1, CSB2) showed some tendency to converge to
the right solution, but were really not able to. While in some cases this was due to
a slow convergence rate, in others the algorithms seemed to have converged only to
start oscillating, or even diverging. Only cost-sensitiveAdaBoost was able to consis-
tently converge to a good solution in the allotted number of iterations. In particular, the
latter producedx∗ = −1.4993 whenC1 = 20 in two iterations, andx∗ = −0.7352
whenC1 = 5 in four iterations. The value of thêC1 estimate that led to the best
solution was, however, not always the trueC1. While whenC1 = 5 cost-sensitive
AdaBoost was nearly optimal witĥC1 = 4.5, near optimal performance in the case
whereC1 = 20 required a cost estimate of̂C1 = 4.7. This mismatch is compliant with
Figure 2, which shows some inability of cost-sensitive AdaBoost to replicate the pos-
terior class probabilities required for optimal performance with highly unbalanced cost
structures (x∗ of very large magnitude). This was not observed for cost-sensitive Logit
or RealBoost. These results show that 1) the new algorithms are far superior than those
previously available, and 2) the optimal solution can be found for most cost-sensitive
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Figure 3: Decision boundaries produced by the different boosting algorithms for vari-
ous cost factors. Left:C1 = 5, right: C1 = 20.

problems, but may require (in particular for cost-sensitive AdaBoost) cross-validation
of cost-parameters.

The most plausible explanation for the poor performance of all other algorithms
appears to be the inappropriate choice of theα parameter: while the weight update
rules seemed to produce cost-sensitive weak learners, the incorrect choice ofα fre-
quently gave disproportionate weight to weak learners withpoor decision boundaries.
For example, in the case of AdaC1, the first two weak learners had threshold of0.0152
and−0.9186 but the corresponding values ofα were0.9056 and0.2404. Although the
second threshold is close to optimal (x∗ = −0.8047), the poor choice ofα gave it little
weight, much smaller than that of the first. This made the overall decision boundary
close to zero. Of all algorithms tested, only CSB1 and CSB2 achieved performance
comparable to that of cost-sensitive AdaBoost, even thoughtheir slow convergence in
this simple problem appears problematic.

5.2 Real datasets

Two sets of experiments were performed with real data. The first involved a number
of datasets from the UCI repository, while the second addressed the computer vision
problem of face detection. To simplify the comparison of results, the quality of cost-
sensitive classification is frequently measured by a scalarmetric that weighs errors of
one type more than others. A common metric [38], which we haveadopted, is

ǫ = pfalse + fcost ×mmiss (59)

wherepfalse is the number of false-positives of the detector,mmiss the number of
misses andfcost > 1 a cost factor that weighs misses more heavily than false positives.
A number of cost factors were considered, andǫ computed for each combination of
1) cost sensitive boosting method, 2) training cost structure estimates, and 3) true cost
factorfcost used to evaluate performance. By training cost structure estimates we refer
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Table 1: Minimumǫ and correspondinĝC1 for cost-sensitive RealBoost on Cleveland
heart.

fcost = 2 fcost = 5 fcost = 10 Average
ǫ 11.6 14 15 13.53

Ĉ1 1.6 4.2 5.1

to the parameters used during training, e.g. the parametersĈ1 andĈ2 of cost-sensitive
boosting.

5.2.1 UCI datasets

Ten binary UCI [28] data sets were used: Pima-diabetes, breast cancer diagnostic,
breast cancer prognostic, original Wisconsin breast cancer, liver disorder, sonar, echo-
cardiogram, Cleveland heart disease, tic-tac-toe and Haberman’s survival. In all cases,
five fold validation was used to find the best cost estimate by searching overĈ1 ∈
[1, 10] (Ĉ2 = 1). Three cost factorsfcost ∈ {2, 5, 10} were considered, and the min-
imum ǫ was found for each. Table 1 gives an example (cost-sensitiveRealBoost and
the Cleveland heart disease dataset) of the relationship between the minimumǫ, fcost,
and the best value of the training cost parameterĈ1. Performance across the various
values off was further summarized by computing the average value of theminimumǫ
achieved by each algorithm.

This average is shown in Table 2 for each of the algorithms considered. The table
also shows the median value of the average across all datasets, and the number of
times that each of the proposed cost-sensitive boosting algorithms outperformedall of
the previously available methods (# of wins). All new algorithms have a median loss
smaller than those in the literature, and outperform all of them in60 to 90% of the
datasets. Overall, cost-sensitive RealBoost has the lowest median loss, and is the top
performer in7/10 datasets. Cost-sensitive LogitBoost achieves the best performance in
the remaining three. This is strong evidence for the superiority of the new cost-sensitive
boosting algorithms over those previously available.

5.2.2 Face detection

An important area of application of cost-sensitive learning is the problem of object
detection in computer vision, where boosting has recently emerged as the main tool
for the design of detector cascades [43]. Since a substantial amount of effort has also
been devoted to the design of evaluation protocols in areas like face detection, this is
a good domain in which to test cost-sensitive classifiers. Wehave adopted the proto-
col of [43] to compare the new cost-sensitive boosting to those previously available.
Given the computational complexity of these experiments we, once again, restricted
the comparison to (the worst-case performer) cost-sensitive AdaBoost. All experi-
ments used a face database of9832 positive and9832 negative examples, and weak
learners based on a combination of decision stumps and Haar wavelet features, as de-
scribed in [43].6000 examples were used, per class, for training, the remaining3832
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Table 2: Average minimumǫ for the UCI datasets considered.

pima liver wdbc sonar wpbc Wisc echo heart
CS-Ada 60.2 30.73 6.66 9.73 21.6 4.33 7 13.53

CS-Log 59.26 31.73 5.26 13.2 19.33 3.6 6.53 13.93
CS-Real 56.66 30.4 6.53 9 18.46 5.6 8.53 13.53

CSB0 65.6 33.8 13.33 16 24.13 12.4 10 21.4
CSB1 85.93 33.53 8.53 10.86 21 46.2 12.33 25.06
CSB2 65.93 31.53 8.13 9.46 20.2 20.33 9.93 18.4
AdaC2 73.33 33.26 7.4 10.6 18.6 9.33 10 20.73
AdaC3 70.33 33.4 6.8 9.86 20.73 5.53 9.73 19.53

ADaCost 263.33 135.06 13.2 69.53 39.73 9.46 21.4 113.86

tic survival median # wins
CS-Ada 94.93 31.2 17.57 7
CS-Log 107.8 32.53 16.63 6
CS-Real 31.6 29.93 16.0 9

CSB0 104.66 36.06 22.77
CSB1 330.73 38.46 29.3
CSB2 101.6 33.26 20.27
AdaC2 42.06 35.6 19.67
AdaC3 86.33 34 20.13

ADaCost 330.8 72.86 71.2

being left for testing, and all boosting algorithms were ranfor 100 iterations. Four
cost factors (fcost ∈ {10, 20, 50, 100}) and a number of training cost structures were
considered. This is illustrated in Figure 4 a) for cost-sensitive AdaBoost. The figure
presents plots ofǫ as a function offcost for various training cost structures witĥC2 = 1
andĈ1 ∈ [1.2, 1000]. Note that detectors trained with largerĈ1 perform better when
fcost is larger, while smaller̂C1 lead to best performance whenǫ weighs the two errors
more equally.

Figure 4 b) presents a comparison of the best performances achieved with cost-
sensitive AdaBoost and each of the previously available cost-sensitive boosting meth-
ods. The plots were produced by considering four values offcost and searching for
the cost structure and threshold that achieved the minimumǫ for each of these values.
The search across cost-structures produces the cost-sensitive detector with classifica-
tion boundaryx∗ = f−1(0) closest to the optimal boundary for the particular value
of fcost under consideration, and threshold manipulation then enables slight adjust-
ments of this boundary. The inclusion of threshold manipulation also permits a fair
comparison to the combination of a cost-insensitive detector (learned with the standard
AdaBoost algorithm) and threshold manipulation. In fact, because standard AdaBoost
is identical to cost-sensitive AdaBoost witĥC1 = 1, this is equivalent to disabling the
search over training cost structures.

It is clear that cost-sensitive AdaBoost consistently outperforms all other methods,
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Figure 4: (a) Misclassification cost for cost-sensitive boosting under different training
cost structures. (b) Minimum misclassification cost of various cost-sensitive boosting
methods on a face detection problem.

for all values offcost. These results illustrate the importance of choosing the confi-
denceα optimally, at each iteration. Methods that do not useα in the weight update
rule (CSB0 and CSB1) have extremely poor performance. Methods that updateα but
are not provably optimal (AdaC2, AdaC3, and AdaCost) perform worse than standard
AdaBoost (or CSB2, which relies on the sameα updates). Finally, the combination
of standard AdaBoost and threshold manipulation is not sufficient to match the perfor-
mance of the optimal cost-sensitive version of AdaBoost, except when the costs of the
two types of errors are approximately equal (smallfcost).

6 Conclusion

We have presented a novel framework for the design of cost-sensitive boosting algo-
rithms. The framework is based on the statistical interpretation of boosting, and derived
with recourse to an asymmetric extension of the logistic transform, which is well moti-
vated from a decision theoretic point of view. The statistical interpretation enables the
derivation of cost-sensitive boosting losses which, similarly to the original AdaBoost
algorithm, can then be minimized by gradient descent in the functional space of convex
combinations of weak learners. The general requirements for optimal cost-sensitive
classification were identified, laying the groundwork for the cost sensitive extension
of many large margin classification algorithms. Specifically, the cost-sensitive exten-
sions of AdaBoost, RealBoost and LogitBoost were derived and shown to satisfy these
requirements.

Experimental evidence, derived from a synthetic problem, standard data sets and
the (timely) problem of face detection, was presented in support of the cost-sensitive
optimality of the new algorithms. The performance of the latter was also compared
to those of various previous cost-sensitive boosting proposals (CSB0, CSB1, CSB2,
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AdaC1, AdaC2, AdaC3 and AdaCost). Cost-sensitive boostingwas shown to consis-
tently outperform all other methods, achieving the smallest misclassification cost at all
cost factors considered.

A Proof of Lemma 2

To find the minimum of the cost-sensitive extension of the exponential loss of (33) it
suffices to search for the the functionf(x) of minimum expected loss conditioned on
x

le(x) = EY |X

[

I(y = 1)e−y.C1f(x) + I(y = −1)e−y.C2f(x)|x
]

= PY |X(1|x)e−C1f(x) + PY |X(−1|x)eC2f(x).

Setting derivatives to zero

∂le(x)

∂f(x)
= −C1PY |X(1|x)e−C1f(x) + C2PY |X(−1|x)eC2f(x) = 0 (60)

it follows that

C1PY |X(1|x)

C2PY |X(−1|x)
= e(C1+C2)f(x) (61)

and

f(x) =
1

C1 + C2
log

PY |X(1|x)C1

PY |X(−1|x)C2
. (62)

It is straightforward to show that the second derivative is non-negative, from which the
loss is minimized byf(x).

To find the minimum of the cost sensitive extension of the binomial loss of (34) it
suffices to search for the the functionf(x) of minimum expected loss conditioned on
x

lb(x) = −EY |X[y′ log(pc(x)) + (1− y′) log(1− pc(x))|x]

= −PY |X(1|x) log(pc(x))− PY |X(0|x) log(1− pc(x))

with pc(x) given by (35). For this, we first compute the minimum with respect to
pc(x), which is given by

∂lb(x)

∂pc(x)
= −PY |X(1|x)

1

pc(x)
+ PY |X(0|x)

1

1− pc(x)
= 0 (63)

or

log
pc(x)

1− pc(x)
= log

PY |X(1|x)

PY |X(0|x)
.
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Using (35), this is equivalent to

2(γf(x) + η) = log
PY |X(1|x)

PY |X(0|x)
,

or

f(x) =
1

C1 + C2
log

PY |X(1|x)C1

PY |X(0|x)C2
.

Since ∂2lb(x)
∂pc(x)2 ≥ 0 andpc(x) is monotonically increasing onf(x) this is a minimum.

B Proof of Theorem 3

From (33) the cost function can be written as

J [f ] = EX,Y [I(y = 1) exp(−C1f(x)) + I(y = −1) exp(C2f(x))]

and the addition of the weak learnerG(x) = αg(x) to the predictorf(x) results in

J [f + αg] = EX,Y [I(y = 1)w(x, 1) exp(−C1αg(x))

+I(y = −1)w(x,−1) exp(C2αg(x))]

with

w(x, 1) = exp(−C1f(x))

and

w(x,−1) = exp(C2f(x)).

SinceJ [f + αg] is minimized if and only if the argument of the expectation ismini-
mized for allx, the gradient direction and optimal step size are the solution of

(αm, gm(x)) = arg min
α,g(x)

EY |X

[

I(y = 1)w(x, 1)e−C1αg(x)

+I(y = −1)w(x,−1)eC2αg(x)|x
]

.
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Noting that

EY |X

[

I(y = 1)w(x, 1)e−C1αg(x) + I(y = −1)w(x,−1)eC2αg(x)|x
]

=

= EY |X

[

I(y = 1)I(g(x) = 1)w(x, 1)e−C1α+

I(y = 1)I(g(x) = −1)w(x, 1)eC1α +

I(y = −1)I(g(x) = 1)w(x,−1)eC2α +

I(y = −1)I(g(x) = −1)w(x,−1)e−C2α|x
]

= EY |X

[

I(y = 1)I(g(x) = −1)w(x, 1)(eC1α − e−C1α)+

I(y = 1)w(x, 1)e−C1α +

I(y = −1)I(g(x) = 1)w(x,−1)(eC2α − e−C2α) +

I(y = −1)w(x,−1)e−C2α|x
]

= PY |X(1|x)w(x, 1)I(g(x) = −1)(eC1α − e−C1α) +

PY |X(1|x)w(x, 1)e−C1α +

PY |X(−1|x)w(x,−1)I(g(x) = 1)(eC2α − e−C2α) +

PY |X(−1|x)w(x,−1)e−C2α

it follows that

(αm, gm(x)) = arg min
α,g(x)

{

P
(w)
Y |X(1|x)I(g(x) = −1)(eC1α − e−C1α)+

P
(w)
Y |X(1|x)e−C1α +

P
(w)
Y |X(−1|x)I(g(x) = 1)(eC2α − e−C2α) +

P
(w)
Y |X(−1|x)e−C2α

}

where

P
(w)
Y |X(y|x) =

PY |X(y|x)w(x, y)
∑

y∈{1,−1} PY |X(y|x)w(x, y)
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are the posterior estimates associated with a sample reweighed according tow(x, y).
Hence, the weak learner of minimum cost is

(αm, gm) = arg min
α,g

EX

{

P
(w)
Y |X(1|x)I(g(x) = −1)(eC1α − e−C1α) +

P
(w)
Y |X(1|x)e−C1α +

P
(w)
Y |X(−1|x)I(g(x) = 1)(eC2α − e−C2α) +

P
(w)
Y |X(−1|x)e−C2α

}

and, replacing expectations by sample averages,

(αm, gm) = arg min
α,g

[

(eC1α − e−C1α) · b + e−C1α · T+ +

(eC2α − e−C2α) · d + e−C2α · T−
]

,

with the empirical estimatesT+, T−, b andd of (42) - (45). Giveng(x), and setting
the derivative with respect toα to zero

∂

∂α
= C1(e

C1α + e−C1α) · b− C1e
−C1α · T+ +

C2(e
C2α + e−C2α) · d− C2e

−C2α · T− = 0

the optimal step sizeα is the solution of

2C1 · b · cosh(C1α) + 2C2 · d · cosh(C2α) = C1 · T+ · e
−C1α + C2 · T− · e

−C2α.

C Proof of Theorem 4

From (33) the cost function can be written as

J [f ] = EX,Y [I(y = 1) exp(−C1f(x)) + I(y = −1) exp(C2f(x))]

and the addition of the weak learnerG(x) to the predictorf(x) results in

J [f + G] = EX,Y [I(y = 1)w(x, 1) exp(−C1G(x)) +

I(y = −1)w(x,−1) exp(C2G(x))]

with
w(x, 1) = exp(−C1f(x)) (64)
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and
w(x,−1) = exp(C2f(x)). (65)

SinceJ [f+G] is minimized if and only if the argument of the expectation isminimized
for all x, and assuming that the weak learners depend onx only through some feature
φ(x), the optimal weak learner is the solution of

Gφ(x) = arg minG EY |X[I(y = 1)w(x, 1) exp(−C1G(x))

+I(y = −1)w(x,−1) exp(C2G(x))|x]

= arg minG PY |X(1|φ(x))w(x, 1) exp(−C1G(x))

+PY |X(−1|φ(x))w(x,−1) exp(C2G(x))

= arg minG P
(w)
Y |X(1|φ(x)) exp(−C1G(x))

+P
(w)
Y |X(−1|φ(x)) exp(C2G(x))

where

P
(w)
Y |X(y|φ(x)) =

PY |X(y|φ(x))w(x, y)
∑

y∈{1,−1} PY |X(y|φ(x))w(x, y)

are the posterior estimates associated with a sample reweighed according tow(x, y).
Setting the derivatives of the cost to zero it follows that

P
(w)
Y |X(1|φ(x))C1 exp(−C1G(x)) = P

(w)
Y |X(−1|φ(x))C2 exp(C2G(x))

and

Gφ(x) =
1

C1 + C2
log

P
(w)
Y |X(1|φ(x))C1

P
(w)
Y |X(−1|φ(x))C2

.

The optimal featureφ∗ is the one of smallest minimum cost

φ∗ = arg min
φ

J [f + Gφ]

= arg min
φ

EX,Y [I(y = 1)w(x, 1) exp(−C1Gφ(x)) +

I(y = −1)w(x,−1) exp(C2Gφ(x))]

= arg min
φ





∑

i∈I+

w(xi, 1) exp(−C1Gφ(xi)) +

∑

i∈I−

w(xi,−1) exp(C2Gφ(xi))



 .
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OnceGreal
m (x) is found, the weights are updated so as to comply with (64) and(65),

i.e.
w(x, 1)← w(x, 1) exp(−C1Gφ∗(x))

and
w(x,−1)← w(x,−1) exp(C2Gφ∗(x)).

D Proof of Theorem 5

Rewriting the negative loglikelihood as

lb[y
′, f(x)] = −EX,Y

[

y′ log
pc(x)

1− pc(x)
+ log(1− pc(x))

]

and using (35), it follows that

lb[y
′, f(x)] = −EX,Y

[

2y′(γf(x) + η)− log
[

1 + e2(γf(x)+η)
]]

.

This loss is minimized by maximizing the conditional expectation

−lb[y
′, f(x)|x] = EY |X

[

2y′(γf(x) + η)− log
[

1 + e2(γf(x)+η)
]]

= 2EY |X[y′|x](γf(x) + η)− log
[

1 + e2(γf(x)+η)
]

for all x, i.e. by searching for the weak learnerG(x) that maximizes the cost

J [f(x) + G(x)] = −lb[y
′, f(x) + G(x)|x].

The maximization is done by Newton’s method, which requiresthe computation of the
gradient

∂J [f(x) + G(x)]

∂G(x)

∣

∣

∣

∣

G(x)=0

= 2γ(EY |X[y′|x]− pc(x))

and Hessian

∂2J [f(x) + G(x)]

∂G(x)2

∣

∣

∣

∣

G(x)=0

= −4γ2pc(x)(1− pc(x))

leading to a Newton update

G(x) =
1

2γ
EY |X

[

y′ − pc(x)

pc(x)(1− pc(x))

]

.

This is equivalent to solving the least squares problem

min
G(x)

EY,X

[

(

1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2
]

,
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and the optimal weak learner can, therefore, be computed with

G∗ = min
G

∫

PX(x)

1
∑

y′=0

PY |X(y′|x)

(

1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2

dx

= min
G

∫

PX(x)

1
∑

y′=0

PY |X(y′|x)w(x)
∑1

j=0 PY |X(j|x)w(x)

(

1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2

dx

= min
G

∫

PX(x)
1

∑

y′=0

P
(w)
Y |X(y′|x)

(

1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2

dx

= min
G

E
(w)
Y,X

[

(

1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2
]

which is the weighted least squares regression ofzi to xi using weightswi, as given
by (54) and (55). The optimal feature is the one of smallest regression error.
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