

Abstract

Real-world applications of object recognition often require the *solution of multiple tasks* in a single platform. We propose a transfer learning procedure, denoted NetTailor, in which *layers of a pre-trained CNN are used as universal blocks* that can be *combined with* small task-specific layers to generate new networks. In this way, NetTailor can adapt the network architecture, not just its weights, to the target task.

Experiments show that *networks adapted to simpler tasks become significantly smaller* than those adapted to complex tasks. Due to the modular nature of the procedure, this reduction is achieved without compromise of either parameter sharing across tasks, or classification accuracy.

Goals

- High performance on all tasks HP
- Models *share parameters and computation* to be supported in the same device SP
- Models *trained independently* of tasks/datasets for **distributed development**.
- **Adaptive model complexity** (Easier tasks \rightarrow simple model, Complex \rightarrow complex) AC

AC SP DD Feature extractor remains frozen after pre-training

NetTailor: Tuning the Architecture, Not Just the Weights

Pedro Morgado, Nuno Vasconcelos University of California, San Diego

Idea

- ① Start with a pre-trained network that remains *unchanged*.
- 2 Augment the original network () with a set of small task-specific blocks ()
- ③ Find the *smallest combination of layers and connections* that solves the task.

Path Selection

Blocks removed from inference path when α is small. Coefficients α are parameterized by a **softmax** *distribution* to force network paths to compete

Complexity Constraints

Conditions for removing block B_i^J

Self exclusion: Small coefficient α associated w

Input exclusion: When all incoming paths are ren

Output exclusion: When all departing paths are n

Teacher Network

To preserve performance, a *teacher network finetuned on the target task* is used to supervise the student at each stage.

Learning

1st **Stage:** Tuning the architecture. Student model optimized by SGD under the student model optimized by SGD under the student stud

2nd Stage: Pruning and retraining.

NetTailor

An *attention coefficient* $\alpha \in [0,1]$ for each block $\boldsymbol{x}_i = \alpha_i^i U_i(\boldsymbol{x}_{i-1}) + \sum \alpha_k^i P_k^i(\boldsymbol{x}_k)$

	Probability
with the block.	$P\left(R_{self}^{i,j}\right) = 1 - \alpha_i^j$
moved	$P\left(R_{input}^{i,j}\right) = \prod_{k} \left(1 - \alpha_{I_k}\right)$
removed	$P\left(R_{output}^{i,j}\right) = \prod_{k} \left(1 - \alpha_{O_k}\right)$
$\left(1 - P\left(R_{self}^{i,j} \cup R_{input}^{i,j} \cup R_{output}^{i,j}\right)\right)$	

$$L_t(\boldsymbol{x}) = \sum_l \|\boldsymbol{x}_l^t - \boldsymbol{x}_l\|^2$$

he loss
$$\mathcal{L} = L_c(\mathbf{x}, \mathbf{y}) + \lambda_1 L_t(\mathbf{x}) + \lambda_2 E[C].$$

Blocks with small α are removed. Remaining parameters retrained with $\lambda_2 = 0$.

Learned architectures VOC Flowers **SVHN** NetTailor on different datasets Flowers **NetTailor on different base networks** ResNet50 pruned to the size of ResNet18 while preserving its performance Study different block pruning strategies semantic segmentation, multi-task learning) Support FC⁻

Fundação

para a Ciência

e a Tecnologia

Evaluation

Complex tasks require larger models, simpler task require smaller models

Future Work

* Extend NetTailor path selection framework to tasks beyond recognition (e.g. detection,

Study the benefits of NetTailor to general neural architecture search

ResNet50

- VOC

ResNet34

8 11 14 17 20 23 26

ResNet18

Params (M)

https://github.com/pedro-morgado/nettailor