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ABSTRACT

Neuroimaging has shown great potential for the computer-aided di-
agnosis (CAD) of both Alzheimer’s disease (AD) and Mild Cog-
nitive Impairment (MCI). However, the texture of such images has
been little explored. In this paper, we explore the discriminative
power of the Local Binary Patterns (LBPs) texture descriptor to di-
agnose AD and MCI from 3D brain images. For this purpose, we
propose a novel extension of LBPs to full 3D data that, unlike pre-
vious approaches, makes no approximations to the underlying con-
cepts of uniformity and rotation invariance. Experimental results ob-
tained using FDG-PET images from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) showed that the new feature was able to
improve the system’s performance when compared to the raw Voxel
Intensities (VI) and to the standard 2D LBP version applied to axial
cuts of the PET volume.

Index Terms— Computer-Aided Diagnosis, Alzheimer’s Dis-
ease, Mild Cognitive Impairment, 3D Local Binary Patterns, Positron
Emission Tomography, Support Vector Machine

1. INTRODUCTION

Alzheimer’s disease is a neurological disorder that mostly affects
people over 65 years old and whose incidence rate grows exponen-
tially with age. It is a progressive disease meaning that it worsens
over time, affecting memory, cognitive and physical capabilities, and
eventually leading to death. Currently, no treatment can cure or stop
the progress of AD, but some pharmaceuticals have proven effective
in slowing down the advance of symptoms, especially if the disease
is detected in its early stages. A syndrome that is proved to be re-
lated with the preclinical stage of AD is MCI and, thus, its diagnosis
is essential to improve patients’ life quality.

Several neuroimaging techniques have demonstrated to hold
precious information about the presence of AD, even in its early
stages. Consequently, they have been studied as the main input of
several fully automated diagnostic systems [1, 2]. In the current
paper, we will use the information contained in the texture of the
brain image produced by the FDG-PET neuroimaging technique to
build a system for the CAD of both AD and MCI.

Texture is an alternative source of information that can be re-
trieved from an image, and a great variety of tools to extract it are
known. Two important examples are histograms of gradient mag-
nitude and orientation (HGMO) and co-occurance matrices which
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were studied before for the CAD of AD in [1] and [2], respectively.
Another approach that recently has been successfully applied to a
wide range of different applications, from texture analysis to face
recognition, is based on the Local Binary Patterns [3].

LBPs were originally proposed for 2D texture analysis but there
have been several attempts to extend them to 3D data. However, all
extensions found in the literature introduced some sort of approx-
imation. In [4], “volume LBPs” are proposed, but they deal with
dynamic texture analysis of 2D time series and not full 3D data. In
[5], not only the neighborhood of a voxel is not thresholded with the
central value (the operation is replaced by a simple subtraction) but
also the notion of uniformity that is used depends on the dataset. Fi-
nally, another scheme for rotation invariant LBPs is presented in [6]
but the uniformity concept was ignored. Herein, a novel approach to
full three-dimensional, uniform and rotation invariant LBPs is intro-
duced without any approximation of the underlying concepts.

To our knowledge, 3D LBPs were never used for the automated
diagnosis of AD. In fact, only one related work was found in the
literature where 2D LBPs were used to distinguish between patients
suffering from dementia from normal controls [7]. However, LBPs
were used in that study for the texture analysis of white matter le-
sions on MRI, and no effort was done to extend the descriptor to 3D
data. Moreover, the study was not restricted to AD patients and also
included patients suffering from Lewy Body dementia.

The remainder of the paper is organized as follows: First, in
section 2, we review the original 2D LPBs and present in detail the
proposed extension to 3D data. Then, the experiments and their re-
sults are presented and discussed in section 3. Section 4 concludes
the paper.

2. APPROACH

2.1. Two-Dimensional LBPs

Local Binary Patterns [3] were originally proposed for the texture
analysis of 2D images. An LBP encodes the texture of the neigh-
borhood of a given pixel xc with gray-level Vc using P equidistant
neighbors located over a circumference of radiusR. The coordinates
of the p-th neighbor will be denoted by xp, and its gray-level by Vp.
In addition, neighbors are often located at non-integer coordinates
and bilinear interpolation can be used to compute Vp. The encryp-
tion is done by thresholding the neighbors with the gray-level of the
central pixel, yielding the P -dimensional binary vector

T = [H (V1 − Vc) , . . . , H (VP − Vc)]
T , (1)

where H(·) is the Heaviside function. Vector T can be interpreted
as a binary number and, therefore, can be uniquely identified by the
corresponding (decimal) value. Then, after labeling all pixels in the
image by varying the central pixel xc, the probability of occurrence
of every pattern T is estimated using an histogram. However, the



number of possible patterns grows geometrically with the number
of considered neighbors, increasing the uncertainty associated with
these estimations. Two extensions that reduce the number of labels
were proposed in [3]:

• Uniform LBPs (U-LBPs) – An LBP is said to be uniform if
the binary vector T contains at most two transitions from 0
to 1 or vice versa when traversed circularly. All non-uniform
patterns are merged into the same label.

• Rotation invariant LBPs (RI-LBPs) – Rotation invariance
merges under the same label patterns that can be aligned after
an appropriate rotation.

2.2. Three-Dimensional LBPs

A novel approach to full 3D U-RI-LBPs is now proposed. First,
consider a 3D equidistant neighbor set lying on a sphere of radius
R. In fact, equidistant sampling of the sphere has no exact solution
for most numbers of sampling points P (a problem known as Fejes
Toth’s). However, some numerical approximations are available, as
the ones proposed in [8]. Thus, simple LBPs can be encrypted by
the binary vector T , as in the 2D case. It is when the concepts of
uniformity and rotation invariance are included that obstacles arise.

2.2.1. Uniformity

The original definition of uniformity can not be generalized to higher
dimensions and, therefore, a new definition is proposed: an LBP
is considered to be uniform if and only if the convex hull H0 of
the sampling points for which H(Vp − Vc) = 0 and the convex
hull H1 of the remaining ones do not intersect. Figure 1 illustrates
one example of uniform and non-uniform pattern. Note that this
definition can be applied directly to the original 2D case, leading to
the same notion of uniformity. Now, from the Separating Hyperplane
Theorem [9], one can conclude that ifH0 andH1 are disjoint (do not
intersect), then the hulls are linearly separable. Several algorithms
that check the linear separability between two sets of points exist in
the literature as can be seen in [10], and can be used to determine
efficiently the uniformity of any pattern.

Uniform Non-Uniform

Fig. 1. Examples of LBPs. Green hull – H0; Blue hull – H1. The
hulls are disjoint in uniform LBPs and intersect in non-uniform ones.

2.2.2. Rotation Invariance

In order to decide whether two patterns can be aligned after a rota-
tion without having to explicitly query against all possible transfor-
mations, we first constructed a spherical function f(θ, ϕ) for each
LBP, which is equal to one in a small neighborhood of every point
xp over the sphere (with area A) for which H(Vp − Vc) = 1 and
zero everywhere else, i.e.

f(θ, ϕ) =

{
H(Vp − Vc) , ||x− xp|| ≤ ε ∀p
0 , otherwise

(2)

In the previous equation, x is restricted to the sphere where it
can also be represented by the spherical coordinates (θ, ϕ). Function
f(θ, ϕ) was then decomposed into its spherical harmonics with a
maximum degree of expansion lM , i.e.

f(θ, ϕ) ≈
lM∑
l=0

l∑
m=−l

almY
m
l (θ, ϕ), (3)

where Y m
l is the spherical harmonic of degree l and order m and

alm is the corresponding complex coefficient. Finally, the rotation
invariant shape descriptor SH proposed in [11] was used to describe
f and, thus, to identify rotation invariant LBPs. SH is given by

SH = {||π0(f)||, ||π1(f)||, . . . , ||πlM (f)||} , (4)

where πl represents the projection of f onto the subspace formed by
the span of the spherical harmonics with the degree fixed to l, i.e.
πl =

∑l
m=−l almY

m
l . A comprehensive description of spherical

harmonics can be found in [12].
Important implementation details should now be addressed.

First, each term of SH can be efficiently computed by noting that∣∣∣∣πl(f)
∣∣∣∣2 =

∣∣∣∣∑l
m=−l almY

m
l

∣∣∣∣2 (5)

=

∫∫
Ω

(∑l
m=−l almY

m
l

)(∑l
m=−l almY

m
l

)∗
dΩ (6)

=
∑l

m=−l alma
∗
lm, (7)

where the ∗ notation stands for the complex conjugate of a number.
Equality (7) is obtained after expanding the product of the sums and
using the orthonormal property of spherical harmonics. Addition-
ally, as the areaA over the sphere around each point xp tends to zero,
the function Y m

l (θ, ϕ) restricted to that small region becomes ap-
proximately constant. Consequently, the harmonic coefficients alm
can be approximated by

alm ≡
∫∫

Ω

f(θ, ϕ) · Y m∗
l (θ, ϕ)dΩ (8)

≈ A ·
∑P

p=1 H(Vp − Vc) · Y m∗
l (θp, ϕp), (9)

where (θp, ϕp) is the location of the p-th neighbor in spherical co-
ordinates. Note also that when (9) is replaced into (7) and then into
(4) the factor A is common to all terms in SH. Therefore, its actual
value is not relevant and can be set arbitrarily small so that equation
(9) holds as an equality in the limit.

On a different note, since equidistant sampling is only approxi-
mated for some cardinalities of the neighbor set, which affects rota-
tion invariance, a small difference between the SH descriptors was
allowed. More precisely, if one thinks of SH as a vector of dimen-
sion lM + 1, the same label was assigned to two LBPs i and j if

||SHi − SHj ||
max {||SHi||, ||SHj ||}

≤ η. (10)

Additionally, if a given pattern lies within this margin of two dis-
tinctly labeled LBPs, then that pattern is assigned to the group of the
closest LBP. The closeness criterion was defined as in the left-hand
side of the previous inequality.

2.3. LBPs on Neuroimaging Data

A brain image might not be described by a single texture. Thus, sev-
eral histograms of LBPs were computed inside cubes that were orga-
nized in a mesh that spanned the entire volume. Also, several cube



dimensions, a, were tested allowing for the identification of textures
that are present at different scales. On the other hand, the fact that
all brain images in our database were aligned suggests that the use
of RI-LPBs should not be necessary in order to maximize discrim-
ination ability. However, if we do not consider rotation invariance,
the number of possible patterns is very high, and the uncertainty as-
sociated with the estimation of the probability of occurrence of each
pattern is also considerable, which may jeopardize the system’s per-
formance. Consequently, our choice was to use U-RI-LBPs.

The feature extraction procedure can now be fully stated: First, a
look-up table that maps each pattern to a U-RI-LBP label is created.
In this table, all non-uniform patterns are tagged with the same label,
which is different from the ones that identify each group of rotation
invariant patterns. Afterwards, each position of the brain image is
labeled using the look-up table, and then several histograms are con-
structed, each one in a different cube of the mesh. Finally, the feature
vector is created concatenating all entries of all histograms.

The construction of the look-up table imposes a computational
limit on the number of 3D neighbors, since its computation time
grows geometrically with P . However, although this limiting step
has been performed offline, an online approach would alleviate the
problem, i.e. the patterns could be labeled as they appeared in the
database which would mean that most non-uniform patterns (absent
from the database) would never be analyzed. As for the 2D setting,
time complexity is not a concern since we can enumerate all uniform
patterns without having to analyze non-uniform ones.

2.4. Feature Selection and Learning Machine

The number of features produced by the extraction procedure de-
scribed above is extremely high when compared to the small number
of subjects available for training. This disproportionality is known
to be responsible for the performance degradation of many pattern
recognition systems, and it was tackled in two different ways. First,
only the most discriminant features were retained, using a ranking
selection procedure based on the Pearson correlation coefficient be-
tween each feature and the class label, i.e. by selecting only the
features with highest correlation with the class. The number of fea-
tures, N , to select was left as a parameter to optimize. Second, the
SVM algorithm was used for learning purposes. SVM [13] is one
of the most popular discriminative models for CAD both inside and
outside the AD research field since it has good generalization ability
and produces good results even in the presence of small training sets
[14]. The linear kernel was used in the current work.

3. EXPERIMENTS

3.1. Dataset

Neuroimaging data were retrieved from the ADNI database. The
following restrictions were imposed to the Clinical Dementia Rat-
ing (CDR) of the subjects considered: 0 for normal controls (NC),
0.5 for MCI patients and 0.5 or higher for AD patients, resulting in
a dataset composed by 59 subjects for each group. The retrieved
data had already undergone the following preprocessing steps: co-
registration, orientation alignment, resolution standardization and
intensity normalization, resulting in a 128×128×60 voxel grid with
intensities that span the [0, 32700] interval1. Table 1 summarizes
important clinical and demographic information about each group.

1A more detailed description of the pre-processing stage is available
at http://adni.loni.ucla.edu/methods/pet-analysis/
pre-processing/

Table 1. Characteristics of each group. Format: Mean (Standard
Deviation). MMSE stands for Mini Mental State Exam.

Attributes AD MCI NC
No of subjects 59 59 59

Age 78.3 (6.6) 77.7 (6.9) 77.4 (6.6)
Sex (% of Males) 57.6 67.8 64.4

MMSE 19.6 (5.1) 25.8 (3.0) 29.2 (0.9)

3.2. Experimental Design

Both 2D and 3D LBPs were implemented in order to evaluate the
performance gain achieved by the new scheme. 2D LBPs were ap-
plied to axial cuts of the PET image. A multiresolution texture anal-
ysis of the brain was conducted by considering several values for the
sphere radius R and for the number of samples P . Specifically, the
combinations (R,P ) ∈ {(2, 16), (4, 30), (6, 48)} were considered
for 2D-LBPs and for 3D-LBPs (R,P ) ∈ {(2, 24), (4, 24), (6, 24)}.
P was chosen to always be as high as possible in the 3D case,
i.e. 24 for all tested radii, because, otherwise, the neighbors would
be sparsely distributed over the sphere. In addition, the mesh from
which different histograms were extracted was also tuned by vary-
ing the parameter a in the set {9, 13, . . . , 33}. All features extracted
from all parameter settings were concatenated to form the feature
vector which, after the feature selection stage, was used to train an
SVM. Besides 2D and 3D LBPs, the common approach that uses VIs
as features was also evaluated for comparison purposes.

Both performance assessment and model selection were per-
formed using a 10 × 10-fold nested cross-validation procedure,
which guarantees an unbiased estimate of the system’s performance
and is also able to tune N and the SVM parameter C that controls
the cost of misclassification. The results were averaged after 10
runs. The parameter N was allowed to assume values within the
range 50 to 50000 and C within the range 2−18 to 218. A geomet-
rical progression was used to search these ranges. The parameter η
was studied and fixed to 0.05.

3.3. Results

Table 2 presents three statistics for varying numbers of sampling
points that characterize the 2D and 3D LBP schemes. Specifically,
the number of different uniform patterns, their incidence rate in the
database (i.e. the percentage of occurrence of uniform patterns when
considering all LBPs extracted from all intracranial voxels of all PET
images), and the number of different U-RI-LBP labels.

As mentioned before, the motivation for the uniformity concept
is related to the fact that, despite representing only a small fraction
of the number of possible patterns

(
2P
)
, uniform LBPs are charac-

teristic of textured images. Table 2 confirms this fact for the 2D case
where, for instance, in the setting (R,P ) = (2, 16), only 0.37% of
patterns (242 out of 216) are uniform and yet they account for 92.1%
of the database. On the other hand, the number of U-RI-LBP labels
is small enough and, therefore, reasonable estimations of their prob-
abilities of occurrence can be computed using histograms. Note that
each histogram is built inside a cube with a minimum dimension of
9 (maximum dimension of 33), which means than each histogram
uses at least 729 (at most 35937) LBP instances. Regarding the 3D
extension, Table 2 also shows that the new generalizations of both
uniformity and rotation invariance also achieve the goals for which
they were proposed. 3D U-LBPs still represent a small fraction of
the total number patterns, and still account for the vast majority that
can be extracted from the database. Rotation invariance is also able

http://adni.loni.ucla.edu/methods/pet-analysis/pre-processing/
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Table 2. Statistics of 2D and 3D LBPs.

P

Number
of U-
LBPs

Incidence
Rate of U-LBPs
(R=2,R=4,R=6)

Number
of U-RI-

LBPs

2D
16 242 (92.1, 79.7, 71.5)% 18
32 1 262 (91.5, 77.9, 67.5)% 34
48 2 258 (90.9, 76.9, 66.8)% 50

3D
8 104 (92.8, 91.8, 91.7)% 11

12 338 (87.7, 84.7, 83.5)% 15
24 3 412 (82.3, 78.0, 76.2)% 96

to reduce the number of 3D U-RI-LBP labels to small enough values.
The performances obtained with both 2D and 3D LBPs, as well

as with VI features, in the AD vs. NC and MCI vs. NC classification
problems are presented in Table 3. It can be seen that the novel 3D
scheme performed better than its 2D counterpart in both problems
and achieved significantly better results than VI features in the di-
agnosis of AD and similar results in the diagnosis of MCI, which
indicates that the new procedure is able to extract discriminative in-
formation about the disease. The improvements were attained espe-
cially on the positive side of the diagnostic problem (higher sensitiv-
ity). In fact, in both problems, there was always one other method
that registered a slightly better specificity than the proposed one.
However, it can also be noticed that specificity yielded consistently
better results than sensitivity in both classification tasks, which is a
desirable property for a first-pass clinical procedure as this one.

Finally, the impact of the radius R associated with each pattern
on the system’s performance can be seen in Table 4, where each row
was obtained by restricting the available LBP features to a predefined
radius. The results indicate that the most discriminative features for
both classification problems are extracted using a radius of four vox-
els. In fact, the performance attained in the diagnosis of AD with
R= 4 was even better than with the multi-resolution approach, and
only slightly worst in the diagnosis of MCI (see Table 3), suggest-
ing that the inclusion of additional features with less discriminative
power can degrade the system’s performance.

4. CONCLUSION

This paper studied the use of texture for the computerized diagnosis
of both AD and MCI. Specifically, we proposed a new approach to
the extension of Local Binary Patterns to three dimensions. This ex-
tension differentiates itself from others found in the literature by not
introducing any approximation to the original concepts. In fact, both
uniformity and rotation invariance were successfully generalized.

In addition, 3D-LBPs proved to hold discriminative information
for the diagnosis of AD, even in its early stages. The new texture
extraction procedure achieved the best accuracy in both diagnostic
problems, outperforming its 2D counterpart and the common ap-
proach based on VI features. These results indicate that not only
the texture of FDG-PET images is an important source of informa-
tion for the problem at hand, but also that the proposed 3D extension
is able to enhance the generalization ability of the CAD system.

Finally, it should be stressed that although this work has focused
on FDG-PET images, the same methodology can also be applied to
other neuroimaging modalities.

Table 3. Classification results using a linear SVM kernel. Format:
(Accuracy, Sensitivity, Specificity).

AD vs. NC MCI vs. NC
VI (86.7, 83.2, 90.2)% (75.0, 70.8, 79.2)%

2D-LBP (88.9, 83.7, 94.1)% (71.3, 68.8, 73.7)%
3D-LBP (90.5, 89.0, 91.9)% (75.6, 72.9, 78.4)%

Table 4. Classification results using 3D-LBPs restricted to patterns
with constant radius. Format: (Accuracy, Sensitivity, Specificity).

AD vs. NC MCI vs. NC
R = 2 (88.0, 86.9, 89.0)% (69.5, 64.2, 74.7)%
R = 4 (91.2, 89.8, 92.5)% (75.3, 71.7, 79.0)%
R = 6 (89.2, 85.9, 92.4)% (73.2, 65.9, 80.5)%
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