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ABSTRACT

The textural content of FDG-PET brain images has been shown to
be useful for the diagnosis of Alzheimer’s disease (AD) and Mild
Cognitive Impairment (MCI). In this paper, we investigate the use of
the textons method [1], a powerful texture extraction procedure that
uses a full statistical representation of the response of the image to
a set of filters. We also extend the MR8 filter bank used in [1] to
3D in order to match the dimensionality of FDG-PET images, while
maintaining important properties such as invariance to rotation and
a low dimensionality of the filter response space. We propose two
methods to tackle difficulties inherent to the extraction and classifi-
cation of texture from images whose appearance varies over space
and to the fact that most regions of the image are not affected by
AD or MCI. The first method selects only the voxels with the most
discriminative filter responses, while the second method focuses on
brain regions manually labeled by an expert physician. Experiments
showed that the proposed approaches outperformed the more com-
mon one that uses voxel intensities directly as features both in the
diagnosis of AD and MCI. It was also observed that the discrimina-
tive power of certain brain regions increased significantly when the
texton based analysis was performed.

Index Terms— Alzheimer’s disease, Mild cognitive impair-
ment, Texture analysis, Textons, Classification

1. INTRODUCTION

Alzheimer’s disease is a neurological disorder for which no cure is
currently available, causing long-term memory loss and affecting
other cognitive abilities such as reasoning or planning [2]. As the
disease progresses, these symptoms are aggravated and bodily func-
tions are lost, leading eventually to death. Therefore, early detection
of AD, when the brain is still not too deeply damaged, is essen-
tial to improve quality of life and extend life expectancy. However,
the diagnosis of the condition that is typically associated with this
early stage, Mild Cognitive Impairment (MCI) [3], is still trouble-
some because, among other difficulties, symptoms at this stage are
often confused with “age related” issues [4].

This work was supported by Fundação para a Ciência e Tecnolo-
gia (FCT/MCTES) through the ADIAR project (PTDC/SAU-ENB/114606/
2009). Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. As such, the
investigators within the ADNI contributed to the design and implementation
of ADNI and/or provided data but did not participate in analysis or writing
of this report.

Neuroimaging is one of the tools that is used to improve diag-
nostic accuracy. A particular technique that holds relevant informa-
tion about both AD and MCI is the Positron Emission Tomography
(PET) using fluorodeoxyglucose (FDG) as the tracer. This type of
image measures at each location the consumption of glucose, and
thus it is linked with brain activity and consequently with AD [5].

Consequently, many diagnostic systems based on FDG-PET im-
ages have been proposed, with most of them focusing on voxel inten-
sity (VI) features, either extracted from the whole brain [6] or from
regions of interest [7]. However, texture features have also been
successfully used in the past. For instance, in [8], histograms of ori-
ented gradients were used to extract textural information which were
then fed to a Support Vector Machine (SVM) for the final diagnosis.
In [9], a similar approach was conducted, but a 3D generalization
of Local Binary Patterns was used as the texture descriptor. In this
work, we also use the textural information of FDG-PET images, but
we perform a texton-based texture analysis.

The textons method [1, 10] is a powerful texture extraction
procedure that has raised much interest recently, owing its success
mainly to a full statistical representation of the responses to a prede-
fined set of filters. Moreover, textons have already been successfully
applied to a variety of other problems, from very specific tasks, such
as the detection and grading of lymphocytic infiltration in breast
cancer histopathology [11] or face recognition [12], to more general
problems such as image segmentation [13] and image retrieval [14],
but to our knowledge it had never been applied to the analysis of
PET images for the diagnosis of AD.

We based our diagnostic system on the method proposed by
Varma and Zisserman (VZ) [1]. However, the VZ texton method was
proposed for the analysis of full images of different textures and in
the case of our FDG-PET analysis only a few regions are relevant for
classification. Thus, joining the filter responses from the whole im-
age may reduce the diagnostic accuracy. Therefore, we propose two
methods based on texton analysis that circumvents this issue. One
of them focuses only on the statistically most discriminative voxels,
while the other one performs multiple independent texton analysis
on different regions of the brain. We also compare the two proposed
systems with a third, more common approach, that uses the voxel
intensities of FDG-PET images directly as features.

The remaining of the this paper is organized as follows. First,
we present in section 2 the texton classification method as it was
originally proposed in [1], as well as the 3D extension of the filter
bank that we used in this work. Then, in section 3, we propose two
approaches to deal with the problem at hand. The experimental setup
and the results are described and discussed in section 4, and the most
important conclusions are summarized in section 5.
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2. TEXTURE CLASSIFICATION USING TEXTONS

Texture classification has been an active research field, with several
methods being proposed to describe and eventually to classify tex-
ture images. In this work, the extraction of textural information was
based on the algorithm proposed by Varma and Zisserman [1], which
is described in the next section. Due to the 3D nature of FDG-PET
images, the bank of filters used by this method had to be modified as
explained in section 2.2.

2.1. Basic approach

The Varma and Zisserman (VZ) approach is divided into two stages:
learning and classification.

During the learning stage, a fixed number of images of each
class, nI , are randomly selected and convolved with a filter bank,
generating a set of filter responses. Then, the filter responses at all
pixel positions in those images are clustered into nT clusters, or tex-
tons, using the standard k-means algorithm. This clustering proce-
dure is repeated independently for each one of the nC classes giving
rise, at the end, to a dictionary of nT ×nC textons. The learning
stage ends by generating for each training image a model that will
represent it from that point forward. Such models are built by la-
beling each position of the image with the closest texton, and then
computing the normalized histogram of those labels. Each model is
therefore a vector with nT ×nC elements where the n-th element
represents the probability of the filter responses at any position of
the image being most reliably represented by the n-th texton of the
dictionary.

During the classification stage, the response of the novel image
to the filter bank is computed, and a model is constructed in the same
way as with training images. The classification is then carried out
with a nearest neighbor classifier, i.e., by assigning to the new image
the class of the nearest training model. A χ2 distance was used in
the VZ classifier to measure the similarity between histograms.

In addition, following the original approach, three preprocessing
steps should be carried out before the learning stage. The intensity
of the input images should be normalized to have zero mean and
unit variance, each filter should also be normalized so that it has
unit l1 norm, and the filter response at each voxel position x should
also be normalized according to the following equation (motivated
by Webber’s law):

F(x)← F(x)

‖F(x)‖2
log

(
1 +
‖F(x)‖2
0.03

)
. (1)

For more information on these preprocessing procedures, the inter-
ested reader should refer back to [1] and references therein.

2.2. Three-dimensional filter bank

Originally, the VZ classifier was proposed with a set of 2D filters
known as the Maximum Response 8 (MR8) filter bank. The MR8
filter bank consists of a Gaussian, a Laplacian of Gaussian, and edge
and line filters, each at 3 pairs of scales and 6 orientations. Although
this results in 38 filter responses, only the maximum across all 6
orientations is kept for the edge and line filters and therefore only
8 filter responses are used. The goal of this maximization step is
to achieve rotation invariance, which is important when images are
allowed to appear with any orientation and to reduce the dimension-
ality of the filter response space where textons are searched for. In
the problem at hand, the latter advantage is more significant than the
former since all PET images were previously aligned.

In this work, since PET images are three dimensional, a 3D ver-
sion of the MR8 filter bank was used. More concretely, the filter
bank was composed by a 3D Gaussian filter and its Laplacian:
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whereK is a normalization factor and x = (x1, x2, x3) is the vector
of spatial coordinates, and three other types of filters at 3 triplets of
scales (σ1, σ2, σ3) and 61 orientations. Namely, 3D edge filters,
plane filters and line filters where an exemplar of each type of filter
is given by:
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respectively. Despite the large number of filters, since only the max-
imum across different orientations is kept, the final filter response
space has only 11 dimensions (2+3×3) which is still small enough
for a reliable clustering. One exemplar of each type of filter is shown
in Fig. 1.

3. ALZHEIMER’S DISEASE DIAGNOSIS USING TEXTONS

In the previous section, the basic texture classification algorithm was
presented. As mentioned before, the original VZ classifier was de-
signed to recognize a set of pre-learned texture classes from texture
images, i.e. from images where any patch of sufficiently large di-
mension has similar appearance and no distracting background.

The diagnosis of AD from FDG-PET images presents differ-
ent properties that needed to be dealt with in order to achieve good
generalization. First, only a few regions within the original volume
present distinct appearances across individuals of different classes.
Second, the appearance of the image is not uniform over the entire
volume. Also, the 3D nature of PET images and the consequent
larger number of voxels makes the computational needs a constraint.
On the other hand, all images share the same orientation since they
were registered to the same anatomical space, their intensities are
normalized and there are no problems regarding viewing angles.

In order to take these properties into account, we propose the
following two approaches for the diagnosis of AD.

3.1. Texton analysis of the most discriminative voxels

Most regions of the FDG-PET images have similar appearance
across all subjects despite the inter subject brain variability. There-
fore, if we computed the final histograms using the labels of the
textons associated with the entire image, the contribution to the
final model of the smaller regions with discriminative appear-
ance would be mixed together with the labels of the remaining
non-discriminative regions and the generalization ability would be
reduced. Consequently, we should expect improved results if we



Fig. 1. Filter bank. An example of each type of filter is given. For each filter, three perpendicular cuts are shown: the top-left, top-right and
bottom-left images represent the cuts through the planes x2 = 0, x1 = 0 and x3 = 0, respectively. In the bottom-right images, isosurfaces of
the kernels are presented.

restrict the texture analysis only to the most relevant regions of the
brain.

Several measures of relevance can be found in the literature, but
since we are searching for the best voxels, which are now repre-
sented by 11-dimensional vectors, measures such as mutual infor-
mation that require the full estimation of the underlying distribution
should fail due to the sparsity of training data. In this work, we
opted for a wrapper method instead, i.e. we used a simple classi-
fier to score each voxel independently. More specifically, we used a
9-nearest neighbor classifier and scored each voxel based on its accu-
racy computed through a cross-validation procedure. After scoring
all voxels, we selected the best nV and used their filter responses to
build the dictionary and extract the models. Then, in addition to the
nearest neighbor classifier based on a χ2 distance, a few others were
tested in order to search for the best generalization, as explained in
section 3.3.

Just for the sake of comparison, we also used the same num-
ber of VIs directly for classification (instead of the histograms of
textons), but in this case the nV voxels were selected based on the
mutual information between its intensity and the class label.

Note that these discriminative selection schemes can only be ap-
plied because the images were previously registered to a common
space (the Tailarach space to be precise) and, thus, equivalent voxels
correspond to the same anatomical position.

3.2. Independent texton analysis of ROIs

Different regions of the PET volume may exhibit distinct appear-
ances but only some of them are associated with AD related changes.
In order to deal with this characteristic, we analyzed 7 disjoint re-
gions independently. These regions were manually labeled by an ex-
pert physician on the average PET volume of Normal Controls (NC),
and only regions associated with AD related changes were analyzed,
namely: 1) left and right lateral temporal; 2) left and right mesial
temporal; 3) inferior frontal gyrus; 4) inferior anterior cingulate; 5)
left and right dorsolateral parietal; 6) superior anterior cingulate; 7)
posterior cingulate and precuneus.

Image classification using this approach was performed in the
following way. First, the texton dictionary was built, and the mod-
els computed using only the filter responses at locations belonging
to a single region. This procedure was repeated for each region, re-
sulting in 7 different dictionaries and 7 models for each one of the
training and testing images. Then, two classification schemes were
compared. In the first, all histograms were concatenated and several
classifiers tested (see section 3.3), and, in the second, each region
was classified independently and the predictions were combined us-
ing the majority voting rule.

Once again, we also compared this approach with one that uses
the intensity of the voxels inside each region directly as features.

3.3. Classifiers

Before describing the different classifiers that were used, let us intro-
duce the notation. Each subject is represented by an N -dimensional
feature vector f (p) =

(
f
(p)
1 , . . . , f

(p)
N

)
and its class label y(p), where

the superscript p indexes subjects in the database. This is valid
whether features represent bins of the histogram or voxel intensities.

As for the classifiers, two different types were tested: k-Nearest
Neighbors and Support Vector Machines.

3.3.1. k-Nearest Neighbors

A nearest neighbor classifier was originally proposed for the classifi-
cation of the models extracted from a texton analysis [1]. Therefore,
we also tested this approach, but we used the more general k-nearest
neighbors (k-NN) classifier with the parameter k being selected by
cross-validation.

The χ2 distance (equation (7)) was preferred over the standard l2
distance because it is more suitable to measure similarities between
histograms:

dχ2

(
f (p), f (q)

)
= 2

N∑
i=1

(
f
(p)
i −f(q)i

)2

f
(p)
i +f

(q)
i

. (7)

3.3.2. Support Vector Machine

A Support Vector Machine [15] is an algorithm that searches for
the class separation hyperplane with maximum margin, whether it is
on the original or some other (typically higher dimensional) space.
An SVM is also able to deal with non separable data by using the
soft margin concept, which allows for mislabeled examples to occur
while penalizing them. On the other hand, the use of kernel func-
tions enables us to map (implicitly) the input patterns into a higher
dimensional space, and consequently to learn non-linear separation
surfaces in the original space.

In this work, in addition to the linear kernel:

KL

(
f (p), f (q)

)
= f (p) · f (q), (8)

we also tested the generalized histogram intersection (GHI) kernel
[16] because it is able to measure the degree of similarity between
two histograms. The GHI kernel is defined as:

KGHI

(
f (p), f (q)

)
=

N∑
i=1

min

(∣∣∣f (p)
i

∣∣∣β , ∣∣∣f (q)
i

∣∣∣β) , (9)



where the parameter β was introduced to add flexibility to the under-
lying mapping function and can be used to improve generalization.

4. EXPERIMENTAL RESULTS

We now describe the image database that was used herein and the
experiments that were conducted to validate the two approaches pro-
posed in this paper.

4.1. ADNI Database

All PET images were retrieved from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database, but the following class de-
pendent restrictions were imposed to the Clinical Dementia Rating
(CDR) score of each subject: 0 for healthy controls, 0.5 for MCI pa-
tients and 0.5 or higher for AD patients, resulting in a dataset com-
posed by 59, 104 and 70 subjects, respectively. Table 1 summarizes
important clinical and demographic information about each group.

The retrieved data had already undergone a series of preprocess-
ing steps in order to minimize differences between images and thus
allowing voxel-wise comparisons. More specifically, every PET im-
age was reoriented (such that the anterior-posterior axis of the sub-
ject is parallel to the AC-PC line), normalized in its intensity, and
smoothed to a uniform standardized resolution [17]. Finally, they
were all warped to the Tailarach brain atlas [18].

Table 1. Characteristics of each group. Format: Mean (Standard
Deviation). MMSE stands for Mini Mental State Exam.

Attributes AD MCI NC
No of subjects 59 104 70

Age 78.0 (6.6) 77.1 (7.2) 77.7 (4.9)
Sex (% of Males) 55.9 64.4 65.7

MMSE 19.6 (5.1) 26.3 (3.1) 29.2 (0.9)

4.2. Experimental setup

The proposed approaches were evaluated on two diagnostic prob-
lems, AD vs. NC and MCI vs. NC, under several conditions.

The filter bank that was used was a 3D version of the MR8
filter composed by 5 types of filters at several scales and orienta-
tions, as previously described in section 2.2. A single scale (σ =
2) was used for the Gaussian filter and its Laplacian (no rotations
were needed since they are already rotation invariant). The 3D edge
and plane filters were included at 3 triplets of scales, (σx, σy, σx)
= {(1.5, 1.5, 0.5), (3, 3, 1), (6, 6, 2)}, as well as the line filter,
(σx, σy, σx) = {(0.5, 0.5, 1.5), (1, 1, 3), (2, 2, 6)}. The last 3 types
of filters were replicated with multiple orientations. In fact, equa-
tions (4) to (6) only allow us to build the version of the filters with
rotational symmetry around the z-axis. The remaining versions
were obtained by rotating this one ϕ radians around the z-axis,
first, and then θ radians around the y-axis. In addition to the initial
orientation, we also added to the filter bank filters rotated with all
combinations of θ =

{
π
6
, 2π

6
, . . . , 5π

6

}
and ϕ =

{
0, π

6
, . . . , 11π

6

}
.

The number of images, nI , that were initially used for clustering
was fixed to 50. We performed a few experiments to study this pa-
rameter but, as expected, it did not influence much the performance
of the recognition system, unless a very small number of images
were used. These experiments are not presented here due to space
concerns. The number of textons per class, nT , and the number of
selected voxels, nV , were also studied as explained in the next sec-
tion.

Fig. 2. Influence of the number of textons per class on the diagnostic
accuracy for the problems: AD vs. CN (left) and MCI vs. CN (right).

Fig. 3. Influence of classifier parameters on the diagnostic accuracy
attained on the validation sets during the nested cross-validation for
the problems: AD vs. NC (top row) and MCI vs. NC (bottom row).
The color encodes the number of textons, with darker tones meaning
smaller numbers.

Regarding the parameters associated with the classifiers, they
were all tuned inside a nested cross-validation procedure. The al-
lowed values were the following: number of neighbors of the k-NN
algorithm, k ∈ {1, 3, . . . , 41}; parameter C of the SVM algorithm,
C ∈

{
2−5, 2−3, . . . , 211

}
; parameter β of the GHI kernel, β ∈

{0.2, 0.4, . . . , 1}. In addition to the classifiers presented in this pa-
per, we also tested the Naive Bayes and the l2 based k-NN classifiers
but their performances were not as competitive.

As for the VI approach, we only present the results attained by
a linear SVM. However, we also tested the Radial Basis Function
(RBF) kernel, but worse performances were achieved.

4.3. Texton analysis of the most discriminative voxels

The first approach, where only the most discriminative voxels were
used to build the texton dictionary and to compute the models, was
studied extensively.

First, we studied the effect of the parameters of the system on
the generalization ability on the two binary problems. We evalu-
ated all combinations between a set of numbers of textons per class,
nT ∈ {15, 25, 40, 50, 65, 75, 90, 100}, and a set of numbers of
selected voxels, nV ∈ {1000, 2000, . . . , 9000}. Figure 2 shows the
maximum diagnostic accuracy over the allowed numbers of selected



Fig. 4. Diagnostic accuracies achieved with an independent texton-based analysis of 7 brain regions for the problems AD vs. NC (on the
top) and MCI vs. NC (on the bottom). Performances attained using each region individually, concatenated histograms and majority voting
are shown. Also, the last group of results, “VI – Linear SVM”, shows, for comparison purposes, the results attained using VIs and the linear
SVM for classification.

voxels as a function of the number of textons for both diagnostic
problems (AD vs. CN and MCI vs. CN).

As can be seen, all texton-based classification schemes achieved
at some point better performances than VI (black straight line) when
discriminating between AD and NC, with the best score of 91.4%
being reported by the linear SVM using dictionaries with 75 textons.
As for the diagnosis of MCI, the texton analysis was largely aided by
the increase of the dictionary size. Consequently, we subsequently
allowed larger numbers of textons and achieved the best overall ac-
curacy of 74.9% using 200 textons per class and an SVM with the
GHI kernel for classification. These performances are significantly
better than the 86.7% and 71.2% accuracies achieved by the VI ap-
proach on the AD vs. CN and MCI vs. CN problems, respectively.

Qualitatively, the impact of the number of textons on the gen-
eralization is consistent with the difficulty of the problem. In fact,
the diagnosis of MCI is admittedly harder than the diagnosis of AD,
which means that the underlying distributions of the filter responses
among competitive classes are more similar, and thus refining the
Voronoi partitioning of the filter response space, introducing more
centroids, helps the system to find the smaller discriminative regions
of the filter response space. On the other hand, the number of se-
lected voxels did not affect considerably the generalization of the
system as long as it was set high enough.

In what regards the type of classifier used for the diagnosis, our
experiments led us to the conclusion that an SVM based classifi-
cation generally leads to a significant improvement over the k-NN
classifier initially proposed in [1], and that the GHI kernel only con-
firmed its theoretical advantage over the linear kernel on the task
MCI vs. CN (see Fig. 2). In addition, although the parameters as-
sociated with classifiers were always tuned inside the nested cross-
validation procedure, we also wanted to observe their influence on
the final results. Fig. 3 gives us the general picture, where the top
row is concerned with the diagnosis of AD and the bottom row with
the diagnosis of MCI. Note that, each line, which was estimated as

the average accuracy attained on the validation sets, corresponds to
a pair of parameter values (nT , nV ). Two important observations
can be drawn from the analysis of this figure. On one hand, we can
see that, in these two specific problems, better accuracies might be
achieved if we base our classification in the consensus decision of
more than one neighbor (when a k-NN approach is used), in contrast
with what was originally proposed in [1]. On the other hand, it can
be observed that there is significant overfitting in the tuning of the
classifier parameters on the MCI vs. CN problem, since large dif-
ferences are visible between the best performances observed on the
validation and test sets.

4.4. Independent texton analysis of ROIs

The second approach extracts textural information in seven regions
of the brain, independently, using the texton analysis and, then, two
classification schemes are tested. The first one concatenates the
seven models (histograms of texton labels) of every subject and clas-
sifies the resulting feature vectors using one of the classifiers de-
scribed in section 3.3. The second one performs the diagnosis di-
rectly from the models of each region and then combines the re-
sulting seven predictions into a single, hopefully more reliable one
through the majority voting rule. The most important results are
shown in Fig. 4, where all experiments were conducted using a fixed
number of textons per class nT = 90. Note that, in addition to the
final classification accuracies, we also present the performances that
would be achieved if each region was used as the only source of in-
formation. In order to keep the comparison fair, we also evaluated
the VI approach (with the linear SVM) using only voxels from each
one of the selected regions independently. Several details should be
emphasized.

First, regions such as dorsolateral parietal, lateral temporals and
mesial temporals are already very discriminative by themselves, es-
pecially on the problem opposing AD patients to healthy controls.
Nevertheless, the combination of regions achieved enhanced results



in almost all scenarios, with the best performances being achieved
in the two tasks (89.1% and 71.4%, respectively) by concatenating
region models and feeding them to an SVM with the GHI kernel.
Also, it is worth noting that several significant improvements were
achieved by the proposed method on isolated regions when com-
pared to the equivalent VI experiment, for instance, on the dorsolat-
eral parietal in the AD vs. CN problem or the mesial temporal in the
MCI vs. CN, among others.

On the other hand, the SVM based classification proved, once
again, to attain performances superior to the k-NN algorithm, in con-
formity with the results presented in the previous section, but not
superior to the VI approach when diagnosing MCI. In fact, the dif-
ferences between these two schemes are so small that they should be
dismissed.

Finally, we can also notice that the approach discussed in the
previous section (with a discriminative selection of image voxels)
has better generalization ability than this one (with a selection based
on ROIs) for both diagnostic problems. As mentioned before, the ap-
pearance of a PET image is not uniform over the entire volume (as
in texture images) and, thus, less discriminative models may be con-
structed if the spatial information is completely disregarded. How-
ever, the partitioning used herein might not be optimal for this spe-
cific task, even though the delineated regions have been carefully
selected. Therefore, automatic segmentation approaches, which are
able to search for better partitions of the PET image, can be used is
this context to possibly enhance the system’s performance.

5. CONCLUSION

In this paper, we proposed the use of 3D textons for the diagnosis
of AD and MCI. We presented two approaches to circumvent some
difficulties associated with the use of a texture classification algo-
rithm to perform the diagnosis from PET images. The first approach
focused only on the most discriminative voxels, while the second
focused on a set of manually labeled ROIs.

Experiments allowed us to conclude that both approaches out-
performed the most common one, based on VIs, in the diagnosis of
AD. As for the diagnosis of MCI, although both methods have re-
ported higher accuracies, the differences were only significant when
a discriminative selection scheme was used. Overall, we consider
that the results attained in this work are convincing, especially when
taking into account the small portion of the PET image that was used
to conduct the texture analysis.
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