Chapter 2

Retrieval as statistical inference

The central component of an architecture for content-based image retrieval (CBIR) is a
criteria for evaluating image similarity. Typically, this is achieved by defining a similarity
function that maps the space of image classes that compose a database into the space of pos-
sible orderings for those classes. In this chapter, we argue that a natural goal for a retrieval
system is to minimize the probability of retrieval error!. This leads to a new formulation
of the retrieval problem, derived from Bayesian decision theory, and a probabilistic criteria

for the evaluation of image similarity.

In addition to minimizing retrieval error the Bayesian solution unifies a large body of
similarity functions in current use. In particular, it is shown that most of these functions can
be derived from Bayesian retrieval by 1) making assumptions with respect to the densities
of the image classes or 2) approximating the quantities involved in Bayesian inference.
This suggests that, even if minimizing probability of error is not the desired goal for the
retrieval system, there is no apparent reason to prefer those functions to the Bayesian
counterpart. The theoretical claims are validated through retrieval experiments that confirm

the superiority of Bayesian similarity.

'A more generic performance criteria is the Bayes risk [10] where different types of errors are assigned
different costs. Because we currently do not have good strategies to define such costs, we simply assign a
unitary cost to all errors (and zero cost to all correct decisions), in which case Bayes risk is equivalent to the
probability of error. It would, however, be straightforward to extend the retrieval formulation presented in

the thesis to the minimization of Bayes risk, if more detailed costs were available.
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2.1 Terms and notation

We start by defining some terms and notation. An image I is a map from a two-dimensional
pixel lattice of size P x @
L={1,...,P} x{1,...,Q} (2.1)

into the space A of all P x @) arrays of pixel colors
I:L— A

The color of pixel (i,5) € L is denoted by I; ; and can be a scalar (for gray-scale images)
or a 3-D vector (for color images). In the former case, the pixel color is also referred to as

intensity. The number of color channels in an image is denoted by c.

We define two indicator functions. For any set E, the set indicator function is

1, ifxekFE,
xe(x) = (2:2)
0, otherwise.

For any two integers ¢ and j, the Kronecker delta function is defined by

1, ifi=yj,
0ij = (2.3)
0, otherwise.

A partition of a set E is a collection of subsets (also known as partition cells or regions)

{E1,...,ER} that are disjoint and cover E, i.e.

UR Ei=Eand E;NE; =0, Vi # j. (2.4)

An image database D is a collection of images
D={I,...,Is}
where S is the database size. Within a database, images are organized into M image classes
D ={Dy,...,Dun}

where the D; are a partition for D.
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In general, a classification of the images in the database is available. If that is not the
case, two alternatives can be pursued. The first is to assume that each image defines a class
by its own. This solution reflects the absence of any prior knowledge about the database
content and leads to as many classes as the cardinality of the database. We denote this
type of structure as a flat database. The second is to try to generate the classification
either automatically or manually. Since individual images can always be seen as subclasses
ingide the classes D; we call this organization a hierarchical database. Of course, there
can be multiple levels in the hierarchical organization of a database. In all the theoretical
derivations of the thesis we assume that the images are already classified. For experiments
we always rely on a flat database structure. The issue of automatically grouping the images

in the database, or indezxing, is not addressed.

Associated with an image database there is a space Z C R" of image observations. An
image observation z = {z,...2p} is a vector containing n pixel colors extracted from an
image. The region of support of observation z is the set of pixels in £ whose colors are
represented in z. It can be a single pixel (n = ¢) or any number b of them (n = ¢b). When
b > 1, the regions of support of different observations can overlap and, consequently, there
can be as many observations as there are pixels in the image. A feature transformation is
a map

T:Z—=X

from the space of image observations into some other space X deemed more appropriate to
the retrieval operation. We call X the feature space, and x = T'(z) a feature vector. Features
are the elements of a feature vector and feature vectors inherit the region of support of the
observations from which they are derived. If the feature transformation is the identity, then

Z and X are the same.

A feature representation is a probabilistic model for how each of the image classes
populates the feature space X. We introduce a class indicator variable Y € {1,..., M} and
denote the class-conditional probability density function (pdf) or class-conditional likelihood
associated with class ¢ by Pxy(X = x|Y = 4). This can be any non-negative function
integrating to one. Throughout the thesis, we use upper case for random variables and
lower case for particular values, e.g. X = x denotes that the random variable X takes the

value x. When the meaning is clear from context, we usually omit one of the symbols. For
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example, Px|y(x|?) is commonly used instead of Px|y (X = x|Y" = ). Boldface type is used

to represent vectors.

One density that we will encounter frequently is the Gaussian, defined by a mean vector

¢ and a positive-definite covariance matrix X according to

1

= e alxnli 2.5
2 > .
G 29

G(x, 1, 2B) =
where
Ix — pllz = (x - p) "= (x — p) (2.6)
is the quadratic norm defined by ¥~!'. The Euclidean norm is the particular case in which
3 =1 When ¥ = oI and 0 — 0 the Gaussian converges to the Dirac function [123] defined
by
[ 8 = x0)f(x)dx = f(x0), 27)

for all continuous functions f(x).

Together, a feature transformation and a feature represemtation determine an image
representation. An image representation and a similarity function define a retrieval system.
This is a system that accepts queries from a user and searches a database for images that
best match those queries. A visual gquery x is a collection of N feature vectors {Xj};yzl
extracted from a query image. If the the union of the regions of support of these feature
vectors covers the entire lattice £ the query is denoted as global. Otherwise, it is denoted
as local. Local queries can be assembled through a graphical interface, by allowing a user
to select a region or collection of regions from the query image. Throughout the thesis we

rely on the following independence assumptions.
Assumption 1 The feature vectors {Xj};yzl included in a visual query are independent and
identically distributed (iid)

N
Pxy, . xy (x1,. ., xn) = [ Px(x;)-
P

Assumption 2 Given the knowledge of the true image class the query feature vectors

{Xj}év:l are independent
Py [viX, . X1, X1, Xy (K6 X1 X1, X1, -, XN) = Py (x5]6)
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By application of the chain rule of probability, Assumption 2 is equivalent to

N
Px,. xyp(®1-.-xnli) = [] Pxpy (%) (2.8)

j=1
Given these definitions, we are now ready to address the questions posed by the design

of a retrieval system. We start by considering the question of image similarity.

2.2 A Bayesian criteria for image similarity

In the image retrieval context, image similarity is naturally formulated as a problem of

statistical classification. Given the feature space X, a retrieval system is simply a map

g: X —= {l,...,M}

x =y

from X to the index set of the M classes in the database. It is relatively common, in
the vision and retrieval literatures, to define this map up-front without a clear underlying
justification. For example, the most popular retrieval solution is to minimize the distance
between color histograms? [172, 72, 49, 96, 2, 121, 193, 168, 149, 126, 43, 167, 163]. It is
not clear that when confronted with the question “what would you like a retrieval system
to do?” a naive user would reply “minimize histogram distance.” In this work we define a
more intuitive goal, the minimization of probability of retrieval error; i.e. we design systems

that strive to be wrong as rarely as possible.

Definition 1 A retrieval system is a map
g: X —={l,...,M}

that minimizes

Px,y(g(X) #Y)

*We will give a precise definition of the term color histogram later on.
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i.e. the system that has the minimum probability of returning images from a class g(x)

different than that to which the query x belongs.

Formulating the problem in this way has various advantages. First, the desired goal is
stated explicitly, making clear what the retrieval operation is trying to achieve. Second,
the criteria is objective leading to concrete metrics for evaluating the retrieval performance.
Finally, it allows us to build on a relatively good theoretical understanding of the properties
of various types of solutions (e.g. if their performance converges or not to that of the optimal
solution and how quickly it does so) that are already in place for similar problems. In fact,

once the problem is formulated in this way, the optimal solution is well known [38, 39, 48].

Theorem 1 Given a feature space X and a query x, the similarity function that minimizes

the probability of retrieval error is the Bayes or mazimum a posteriori (MAP) classifier
g% (x) = arg max Py x (i[x). (2.9)
Furthermore, the probability of error is lower bounded by the Bayes error
L*=1- Ex[miax Py x (i]x)], (2.10)

where Ex means expectation with respect to Px(x).
Proof: The proof can be found in various textbooks (see [38, 48] among many others). We
include it here because 1) it is simple, and 2) provides insights for some later results.
The probability of error associated with the decision rule g(x) is

Pxy(9(X)#Y) = /PY|X(Y # 9(x)|x) Px (x)dx = Ex[Pyx(Y #g(x)[x)],  (2.11)

where
Pyix(Y #9(x)[x) = D> PY #g(X)X =xY =i)Pyx(ilx)
i
= > (1= y,1) Prix (i]x)

= 1= 800, Prix(ilx) (2.12)
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and d; ; is the Kronecker delta function defined in (2.3). It follows that

Pyix(Y #9(x)[x) > 1—maxPyx(ix)
= 1-Pyx(Y =g"(x)[x)

= Px(Y #9°(x)x)

and, consequently

Ex[Prx(Y # g(x)|x)] 2 Ex[Pyx (Y # ¢" (%) [x)]-

Le., any other decision rule will have a larger probability of error than the Bayes classifier.

Since, from (2.11),
Pxy(9"(X) #Y) =1 = Ex[Pyix(Y = ¢" (x)[x)] = 1 — Ex[max Pyx (i[x)] = L*
the probability of error can never be smaller than the Bayes error. O

The posterior probabilities Py x (i[x) are in general not easy to compute, making the di-
rect implementation of this theorem difficult. To cope with this difficulty, several alternative
approaches to the classification problem have been proposed in the now extensive classi-
fication literature. At the coarsest level, one can divide them into two major categories:

discriminant classifiers and classifiers based on generative models.

Discriminant classifiers strive to find the surfaces in X that better separate the regions
associated with the different classes in the sense of Theorem 1, classifying each point accord-
ing to its position relative to those surfaces. Examples in this set are linear discriminant
classifiers [39], neural networks [13], decision trees [18], and support vector machines [184],
among others. From the retrieval point of view, discriminant classifiers have very limited
interest because they must be retrained every time an image class is added to or deleted
from the database. This is a strong restriction in the retrieval scenario, where databases

can change daily or at an even faster pace.

Instead of dealing directly with (2.9), classifiers based on generative models take the
alternative route provided by Bayes rule,

Px |y (x|2) Py (¢)
Px (x) ’

Py x (i[x) = (2.13)
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which leads to
9" (x) = arg max Pxy (x[¢) Py (7)

When the query feature vectors {x;} are iid, from (2.8)

N

g"(x) = argmax I Pxjv (xli) Py (y = 4)
=1
N

= arg miabeg Px |y (xjli) +log Py (i), (2.14)
j=1

where Px |y (x[i) is the class-conditional likelihood for the it* class and Py (i) a prior prob-

ability for this class.

In the recent past, this similarity function has become prevalent for the evaluation of
speech similarity and achieved significant success in tasks such as speech recognition and
speaker identification [140, 145]. This is interesting because, if we can show that it also has
good properties for visual similarity, we will have a common framework for dealing with
images and sound. Also, because the individual likelihood functions Pxy(x|i) are learned
for each image class independently, these classifiers can adapt easily to class additions and
deletions. We denote (2.14) by Bayesian retrieval criteria and will refer to image retrieval
based on it as Bayesian retrieval, probabilistic retrieval, or retrieval based on Bayesian

similarity.

In practice, the probability of error of Bayesian retrieval is usually larger than the Bayes
error. This is due to the fact that we do not know the true likelihood function or prior for
each classes, and these have to be estimated from 1) images available in the database and 2)
prior knowledge about the retrieval problem. We will return to this point in Chapter 3. For
now, we analyze the relationships between Bayesian similarity and the similarity functions

that are commonly used for image retrieval.

2.3 A unified view of image similarity

Figure 2.1 illustrates how various similarity functions commonly used for image retrieval
are special cases of the Bayesian retrieval. While these functions do not exhaust the set

of decisions rules that can be derived from or shown to be sub-optimal when compared to
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the Bayesian criteria (see chapter 3 of [38] for several others), we concentrate on them for
two reasons: 1) they have been proposed as similarity functions, and 2) when available,

derivations of their relationships to Bayesian similarity are scattered around the literature.

The figure illustrates that, if an upper bound on the Bayes error of a collection of two-
way classification problems is minimized instead of the probability of error of the original
problem, the Bayesian criteria reduces to the Bhattacharyya distance (BD). On the other
hand, if the original criteria is minimized, but the different image classes are assumed to
be equally likely a priori, we have the mazimum likelihood (ML) retrieval criteria. As the
number of query vectors grows to infinity the ML criteria tends to the minimum discrimina-
tion information (MDI), which in turn can be approximated by the x? test by performing a
simple first order Taylor series expansion. Alternatively, MDI can be simplified by assuming
that the underlying probability densities belong to a pre-defined family. For auto-regressive
sources it reduces to the Itakura-Saito distance that has received significant attention in
the speech literature. In the Gaussian case, further assumption of orthonormal covariance
matrices leads to the quadratic distance (QD) frequently found in the compression litera-
ture. The next possible simplification is to assume that all classes share the same covariance
matrix, leading to the Mahalanobis distance (MD). Finally, assuming identity covariances
results in the square of the Euclidean distance (ED). We next derive in more detail all these

relationships.

2.3.1 Bhattacharyya distance

If there are only two classes in the classification problem, (2.10) can be written as [48]
L* = Ex[min(Pyx(0]x), Py x(1]x))]
— [ Px(a0) min{Pyix (0]x), Prix (1}x))dx
— / min Py y (x]0) Py (0), Pxyy (x|1) Py (1)]dx

< PP (1) [ /Py (x10) Py (xlT)

where we have used the bound min[a,b] < vab. The last integral is usually known as the

Bhattacharyya distance between Pxy(x|0) and Pxy(x|1) and has been proposed (e.g. [111,
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Figure 2.1: Relations between different image similarity functions.
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30]) for image retrieval where, for a query density Px(x), it takes the form

9(x) = argmin / \/Px() Py (x[i)dx. (2.15)

The resulting classifier can thus be seen as the one which finds the lowest upper-bound on
the Bayes error for the collection of two-class problems involving the query and each of the

database classes.

Whenever it is possible to solve the minimization of the error probability on the multi-
class retrieval problem it makes small sense to replace it by the search for the two class
problem with the smallest error bound. Consequently, the above interpretation of the BD

makes it clear that, in general, there is small justification to prefer it to Bayesian retrieval.

2.3.2 Maximum likelihood

It is straightforward to see that when all image classes are equally likely a priori, Py (i) =

1/M, (2.14) reduces to

1Y ,
g(x) = arg max Z log Px |y (x;]1). (2.16)
J=1

This decision rule is usually referred to as the maximum likelihood classifier. While, as
we will see after Chapter 6, class priors Py (i) provide a useful mechanism to 1) account
for the context in which the retrieval operation takes place, 2) integrate information from
multiple content modalities that may be available in the database, and 3) design learning
algorithms, in Chapters 2-6 we assume that there is no a priori reason to prefer any given
image over the rest. In this case, Bayesian and maximum likelihood retrieval are equivalent

and we will use the two terms indiscriminately.

2.3.3 Minimum discrimination information

If H;,i = 1,2, are the hypotheses that x is drawn from the statistical population with
density Pj(x), the Kullback-Leibler divergence (KLD) or relative entropy [83, 31]

KI[R()[1Pi(0)] = [ Potx)Tog ﬁgj dx (2.17)
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measures the mean information per observation from P, (x) for discrimination in favor of Ho
against Hy. Because it measures the difficulty of discriminating between the two popula-
tions, and is always non-negative and equal to zero only when P, (x) = P(x) [83], the KLD
has been proposed as a measure of similarity for various compression and signal processing

problems [59, 42, 86, 41].

Given a density P;(x) and a family of densities M the minimum discrimination infor-
mation criteria [83] seeks the density in M that is the “nearest neighbor” of P(x) in the
KLD sense

Py (x) =arg min KL[P,(x)||P(x)]-
§(0) = arg | min | KE{Po(0)]|Py(0)]

If M is a large family, containing P (x), this problem has the trivial solution Py(x) = P;(x),
which is not always the most interesting. In other cases, a sample from P»(x) is available but
the explicit form of the distribution is not known. In these situations it may be more useful
to seek for the distribution that minimizes the KLD subject to a stricter set of constraints.

Kullback suggested the problem
> (x) = arg 21&2)12/\4 [P2(x)[|P1(x)]

subject to
/ T(x)Py(x) = 6

where T'(x) is a measurable statistic (e.g. the mean when T'(x) = x) and 6 can be computed

from a sample (e.g. the sample mean). He showed that the minimum is 1) achieved by

1
Z¢ TWP(x)

Py (x) =
where Z is a normalizing constant, Z = [ e~ ) P, (x)dx, and X a Lagrange multiplier [11]

that weighs the importance of the constraint; and 2) equal to
KL[Py(x)||Pi(x)] = =\ — log Z.

Gray and his colleagues have studied extensively the case in which Pj;(x) belongs to the
family of auto-regressive moving average (ARMA) processes [59, 42] and showed, among
other things, that in this case the optimal solution is a variation of the Itakura-Saito distance
commonly used in speech analysis and compression. Kupperman [84, 83] has shown that

when all densities are members of the exponential family (a family that includes many of
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the common distributions of interest such as the Gaussian, Poisson, binomial, Rayleigh and
exponential among others [39]), the constrained version of MDI is equivalent to maximum

likelihood.

The KLD has only been recently considered in the retrieval literature [192, 189, 70, 139,

16], where attention has focused on the unconstrained MDI problem
9(x) = arg min K L[Px (x)|| Px v (x[¢)], (2.18)

where Px (x) is the density of the query and Pxy(x|i) that of the it" image class. Similarly
to the constrained case, it is possible to derive a connection between unconstrained MDI
and maximum likelihood. However, the connection is much stronger in the unconstrained
case since there is no need to make any assumptions regarding the type of densities involved.

In particular, by simple application of the law of large numbers to (2.16),

g(x) = argmax Ey[log Pxy(x|i)] as N — oo
K3
= argmax/Px(x) log Px |y (x|i)dx
K3

= argmjn/Px(x) log Px (x)dx —/Px(x) log Px |y (x[i)dx
K3

: Px(x)
= argmin | Px(x)log ———~_dx
th / x(x) gPX|Y(X|Z)

= argmin KI[Px (x)| | Py (1),

where Ey is the expectation with respect to the query density Px(x). This means that,
independently of the type of densities, MDI is simply the asymptotic limit of the ML
criteria as the cardinality of the query tends to infinity®. This relationship is important
for various reasons. First, it confirms that the Bayesian criteria converges to a meaningful
global similarity function as the cardinality of the query grows. Second, it makes it clear
that while ML and MDI perform equally well for global queries, the Bayesian criteria has
the added advantage of also enabling local queries. Third, while the Bayesian criteria
has complexity O(N), as we will see in Chapter 6, for most densities of practical interest
MDI either has a much reduced complexity or can be approximated by functions with that

property. In practice, by switching to MDI when the size of the query exceeds a given

®Notice that this result only holds when the true distribution is that of the query. The alternative version
of the divergence, where the distribution of the database image class is assumed to be true, does not have

an interpretation as the asymptotic limit of a local metric of similarity.
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threshold, this allows the complexity of Bayesian retrieval to always remain manageable.
Finally, it establishes a connection between the Bayesian criteria and several similarity

functions that can be derived from MDI.

2.3.4 x? test

The first of such similarity functions is the y? statistic. Using a first order Taylor series

approximation for the logarithmic function about z = 1, log(z) ~ = — 1, we obtain®

KLIP,(x)||Py(x)] = / P (x) Tog T3 g

Py(x)
~ / P (X)2 - P (X)P2 (X) dx
Py(x)
/ <P1 (x)2 — P, (x)P3(x)

— P (x)+ Pg(x)> dx

P2 (X)
[ B =P,
P2 (X) ’

where we have used the fact that [ Pj(x)dx = 1,7 = 1,2. In the retrieval context, this

means that MDI can be approximated by

(Px(x) — 1DX|1f(X|i))2dX
Px vy (x]i)

9(x) ~ arg min / (2.19)

The integral on the right is known as the x? statistic and the resulting criteria a x2 test [124].
It has been proposed as a metric for image similarity in [157, 16, 139]. Since it results from
the linearization of the KLD, it can be seen as an approximation to the asymptotic limit of
the ML criteria. Obviously, this linearization can discard a significant amount of information
and there is, in general, no reason to believe that it should perform better than Bayesian

retrieval.

2.3.5 The Gaussian case

Several similarity functions of practical interest can be derived from the Bayesian retrieval
criteria when the class likelihoods are assumed to be Gaussian. We now analyze the rela-

tionships for three such functions: the quadratic, Mahalanobis, and Euclidean distances.

“This result is stated without proof in [31].
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Given the asymptotic convergence of ML to MDI, these results could also been derived
from the expression for the KLD between two Gaussians [83], by replacing expectations

with respect to the query distribution by sample means.

Quadratic distance

When the image features are Gaussian distributed, (2.16) becomes

o(x) = argminlog| i+ 1 3 (en — )75} (xn — 1)
n
= argminlog| %[ + Li, (2.20)
where
£i= g 3 e = )27 = )
is the quadratic distance (QD) commonly found in the perceptually weighted compression
literature [53, 89, 119, 92]. As a retrieval metric, the QD can thus be seen as the result of

imposing two stringent restrictions on the generic ML criteria. First, that all image sources

are Gaussian and, second, that their covariance matrices are orthonormal (|%;| = 1, V7).

Mahalanobis distance

Furthermore, because

1 _ . N N —1/a
= Ntmce[zi U “(xn — %) (xn — %)T] 4 (& — )27 (& - )T
n
= trace[Ei_lf)x] + & =) TSN & - )T

= trace[Z;18,] + M, (2.21)



is the sample mean of x,,

the sample covariance and

the Mahalanobis distance, we see that the MD results from complementing Gaussianity

with the assumption that all classes have the same covariance (Zx = X; = X, Vi).

Euclidean distance

Finally, if this covariance is the identity (¥ = I), we obtain the square of the Euclidean

distance (ED) or mean squared error
& = (% — )T (& — pa). (2:22)

The MD, the ED, and variations on both, have been widely used in the retrieval litera-
ture [163, 24, 96, 43, 166, 153, 118, 158, 134, 102, 193, 129, 65, 15, 160, 139, 72, 195, 175,
150, 96, 7].

Some intuition for the advantages of Bayesian retrieval

The Gaussian case is a good example of why, even if minimization of error probability is
not considered to be the right goal for an image retrieval system, there seems to be little
justification to rely on any criteria for image similarity other than the Bayesian. Recall

that, under Bayesian retrieval, the similarity function is

QD

g(x) = arg minlog | ;| + trace[=7 8] + (% — pi) T2 (% — pi)T (2.23)
2 - ~ J
MD

and all three other criteria are approximations that arbitrarily discard covariance informa-

tion.

As illustrated by Figure 2.2, this information is important for the detection of subtle

variations such as rotation and scaling in feature space. In a) and b), we show the distance,
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under both QD and MD between a Gaussian and a replica rotated by 8 € [0,7]. Plot
b) clearly illustrates that while the MD has no ability to distinguish between the rotated
Gaussians, the inclusion of the trace[S; !3}] term leads to a much more intuitive measure
of similarity: minimum when both Gaussians are aligned and maximum when they are

rotated by /2.

As illustrated by c) and d), further inclusion of the term log|%;| (full ML retrieval)
penalizes mismatches in scaling. In plot c), we show two Gaussians, with covariances
S« = I and ; = 0?I, centered on zero. In this example, MD is always zero, while
trace[2;7133,] o< 1/0? penalizes small o and log|2;| o< logo? penalizes large 0. The total
distance is shown as a function of log o2 in plot d) where, once again, we observe an intuitive
behavior: the penalty is minimal when both Gaussians have the same scale (logo? = 0),
increasing monotonically with the amount of scale mismatch. Notice that if the log ||

term is not included, large changes in scale may not be penalized at all.

2.3.6 L? norms

Despite all the nice properties discussed above, probabilistic retrieval has received small at-
tention in the context of CBIR. An overwhelmingly more popular metric of global similarity

is the LP norm of the difference between densities

9(X) = argmin ( /f |Px(x) — Pxyy (x]i) |de) ? (2.24)

These norms are particularly common in the color-based retrieval literature as metrics of

similarity between color histograms.

The histogram of a collection of feature vectors X is a vector £ = {f1, ..., fr} associated
with a partition of the feature space X into R regions {1, ..., Xr}, where f, is the number
of vectors in X landing on cell X,.. Assuming a feature space of dimension n and rectangular
cells of size A1 X. .. X hy, the histogram provides an estimate of the feature probability density

of the form

PX)=>)" J;,—’“K(x —cy), (2.25)
k

where c, is the central point of the k™ cell, F' the total number of feature vectors, and K(x)
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Figure 2.2: a) A Gaussian with mean (0,0)” and covariance diag(4,0.25) and its replica
rotated by 6. b) Distance between the Gaussian and its rotated replicas as a function of
0 /7 under both the QD and the MD. ¢) Two Gaussians with different scales. d) Distance
between them as a function of log ? under ML, QD, and MD.
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a pdf such that

h
MQ>OJHMVO§WWMM<——

K(x) = 0, otherwise,
/ K(x)d

Defining q to be the histogram of Q query vectors, p¢ the histogram of P vectors from
the 5" image class, and substituting (2.25) into (2.24)

9(X) = argmln (/ |Z (% — FZ) K(x — cT)|1”dX> »

1
r
= arg IIllIl ( 6 - FTZ (x— cT)dx>
. qr p g
= argmin (; 0" FTZ .. Kx— cT)dx>
oy L
: g _pr|\*
_ 4 _ Pr 2.2
Mgﬁm<g:Q Pz> : (2.26)

where we have used the fact that the cells &, are disjoint and K(x) integrates to one. As
shown in [172], assuming that the histograms are normalized (3", ¢,/Q = 3, pt./ Pt = 1, Vi),
the minimization of the L' distance is equivalent to the maximization of the histogram

intersection (HI)

> min(gy, pf»)
-9
a similarity function that has become the de-facto standard for color-based retrieval [172,

139, 149, 96, 72, 150, 163, 164, 125, 68, 44, 167, 43, 168, 17].

9(X) = arg max (2.27)
K3

It is clear that, while (2.16) minimizes the classification error, (2.24) implies that mini-
mizing pointwise similarity between density estimates should be the ultimate retrieval cri-
teria. Clearly, for any of the two criteria to work, it is necessary that the estimates be close
to the true densities. However, it is known (e.g. see Theorem 6.5 of [38]) that the prob-
ability of error of rules of the type of (2.16) tends to the Bayes error orders of magnitude
faster than the associated density estimates tend to the right distributions. This implies
that accurate density estimates are not required everywhere for the classification criteria to

work.

36



In fact, accuracy is required only in the regions near the boundaries between the different
classes, because these are the only regions that matter for the classification decisions. On the
other hand, the criteria of (2.24) is clearly dependent on the quality of the density estimates
all over X. It, therefore, places a much more stringent requirement on the quality of these
estimates and, since density estimation is know to be a difficult problem [184, 162], there
seems to be no reason to believe that it is a better retrieval criteria than (2.16). We next

validate these theoretical claims through retrieval experiments on real image databases.

2.4 Experimental evaluation

A series of retrieval experiments was conducted to evaluate the performance of the ML crite-
ria as a global similarity function. Since implementing all the similarity functions discussed
above was an extensive amount of work, we selected the two most popular representatives:
the Mahalanobis distance for texture-based and the histogram intersection for color-based
retrieval. In order to isolate the contribution of the similarity function from those of the
features and the feature representation, the comparison was performed with the feature
sets and representations that are commonly used for each of the domains: color-based re-
trieval was implemented by combining the color histogram with (2.16) and texture-based
retrieval by the combination of the features derived from the multi-resolution simultaneous

auto-regressive (MRSAR) model® [104] with (2.23).

The MRSAR features were computed using a window of size 21 x 21 sliding over the
image with increments of two pixels in both the horizontal and vertical dimensions. Each
feature vector consists of 4 SAR parameters plus the error of the fit achieved by the SAR
model at three resolutions, in a total of 15 dimensions. This is a standard implementation of
this model [104, 94, 102]. For color histogramming, the 3D YBR color space was quantized
by finding the bounding box for all the points in the query and retrieval databases and
then dividing each axis in b bins. This leads to b cells. Experiments were performed with

different values of b.

Figure 2.3 presents precision/recall curves for the Brodatz and Columbia databases. As

5See the appendix for a more detailed justification for the use of the MRSAR features as a benchmark.
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Figure 2.3: Precision/recall curves for Brodatz (left) and Columbia (right). In the legend,
MRSAR means MRSAR features, H color histograms, ML, maximum likelihood, MD Maha-
lanobis distance, and I intersection. The total number of bins in each histogram is indicated

after the H.

expected, texture-based retrieval (MRSAR/MD) performs better on Brodatz while color-
based retrieval (color histogramming) does better on Columbia. Furthermore, due to their
lack of spatial support, histograms do poorly on Brodatz while, being a model specific for

texture, MRSAR does poorly on Columbia®.

More informative is the fact that, when the correct features and representation are used
for the specific database, the ML criteria always leads to a clear improvement in retrieval
performance. In particular, for the texture database, combining ML with the MRSAR
features and the Gaussian representation leads to an improvement in precision from 5 to
10% (depending on the level of recall) over that achievable with the Mahalanobis distance.
Similarly, on Columbia, replacing histogram intersection by the ML criteria leads to an

improvement that can be as high as 20%".

The latter observation validates the arguments of section 2.3.6, where we saw that, while

5Notice that this would not be evident if we were only looking at classification accuracy, i.e. the percentage

of retrievals for which the first match is from the correct class.
"Notice that, for these databases, 100% recall means retrieving the 8 or 9 images in the same class as the

query, and it is important to achieve high precision at this level. This may not be the case for databases

with hundreds of images in each class, since it is unlikely that users may want to look at that many images.
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Figure 2.4: Results for the same query under HI (left) and ML (right). In both images, the

query is shown in the top left corner, and the returned images in raster-scan order (left to
right, top to bottom) according to their similarity rank. The numbers displayed above the

retrieved images indicate the class to which they belong.

the ML criteria only depends on the class boundaries, HI measures pointwise distances
between densities. This means that whenever there is a change in the imaging parameters
(lighting, shadows, object rotation, etc) and the densities change slightly, the impact on HI
will be higher than on ML. An example is given in Figure 2.4 where we present the results
of the same query under the two similarity criteria. Notice that as the object is rotated,
the relative percentages of the different colors in the image change. HI changes accordingly
and, when the degree of rotation is significant, views of other objects are preferred. On
the other hand, because the color of each individual pixel is always better explained by the
density of the rotated object than by those of other objects, ML achieves a perfect retrieval.
This increased invariance to changes in imaging conditions explains why, for large recall,

the precision of ML is consistently and significantly higher than that of HI.
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