Chapter 3

Image representations for retrieval

Numerous image representations have been proposed for image compression [74, 56, 128,
63, 73], object recognition [180, 62], texture analysis [144, 178, 152, 62, 61, 21] and, more
recently, content-based retrieval [149, 2, 133, 132, 131]. Because we are interested in generic
imagery (i.e. we want to make as few assumptions as possible regarding the content of the
images under analysis) and it is still too difficult to segment such images in a semantically
meaningful way, we will not consider here any representations that require segmentation
either implicitly or explicitly. This includes many representations that are common in

vision [115, 179, 77, 130, 194] and most of the ones used for shape-based retrieval [149].

In order to simplify the understanding of the remaining representations, it is useful to
further decompose them into the two main components discussed in section 2.1: a feature
transformation and a feature representation. In this chapter, we show that minimization
of the probability of error, and the resulting Bayesian solution to the retrieval problem,
provide us with concrete guidelines for the selection of feature spaces and representations.
Interpretation of the strategies in current use according to these guidelines leads to insights
about their major limitations and lays the ground for a better solution, that we will pursue

in subsequent chapters.
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3.1 Bayesian guidelines for image representation

In Chapter 2, we saw that one of the interesting properties of Bayesian retrieval is that it
is optimal with respect to the minimization of error probability. In practice, however, good
results can only be guaranteed if it is possible to achieve a probability of error close to the
Bayes error. In this section, we look for theoretical guidelines that can help us achieve this

goal.

3.1.1 Feature transformation

We start by analyzing the impact of a feature transformation on the overall probability of

€rror.

Theorem 2 Given a retrieval system with observation space Z and a feature transforma-
tion

T:Z—- X,
the Bayes error on X can never be smaller than that on Z. lLe.,

Ly > Ly

where L% and L% are, respectively, the Bayes errors on Z and X. Furthermore, equality is
Z X

achieved if and only if T is an invertible transformation.

Proof: The following proof is a straightforward extension to multiple classes of the one given

in [38] for the two-class problem. From (2.10),
= 1 - Ery) [m?x Py x (4T (2))],
= 1= Brgylmax [ Py x(ls, T(2)) Pyx (2T () ds),

= 1= Brmax [ Pyig(ils) Pax (alT(z))da),
= 1= BErg)[max B, x[Pyz(i|2)| X = T(z)],
> 1= Epg)[Eyx max[Pyz(i]z)|X = T(=)]];

= 1- Ez[ma‘x PY|Z(Z|Z)] = L*Za
i
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where we have used Jensen’s inequality [31], and equality is achieved if and only if T' is an

invertible map.O

This theorem tells us that the choice of feature transformation is very relevant for the
performance of a retrieval system. In particular, 1) any transformation can only increase
or, at best, maintain the Bayes error achievable in the space of image observations, and 2)

the only transformations that maintain the Bayes error are the invertible ones.

3.1.2 Feature representation

While a necessary condition, low Bayes error is not sufficient for accurate retrieval since
the actual error may be much larger than the lower bound. The next theorem provides an

upper bound for this difference.

Theorem 3 Given a retrieval system with a feature space X, unknown class probabilities

Py (i) and class conditional likelihood functions Pxy(x|i), and a decision function
g(x) = arg mZa‘XﬁX|Y(x|i)ﬁY(i)a (3.1)
the actual probability of error is upper bounded by

P(g(X) #Y) < Ly + Z / |Px |y (x|0) Py (i) — pxjy (x[i)py (6)|dx. (3.2)

Proof: From (2.11),
Pxy(g(X) #Y) - Ly = /[PY|X(Y 7 9(x)|x) — Pyix (Y # " (x)|[x)| Px (x)dx  (3.3)
and since, Vx € X such that g(x) = g*(x), we have

Pyix (Y # g(x)1x) = Pyix (Y # ¢"(x)|x),

this is equivalent to

Pxy(9(X) #Y) — Ly = /E[wa(Y 7 9(x)|x) — Pyx(Y # " (x)[x)]Px (x)dx,  (3.4)
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where
E={x|x € X, Px(x) > 0,9(x) # g"(x)}.
Letting
Ax) = Pyx (Y # g(x)[x) — Py ix (Y # g*(x)[x)
and defining the sets
Ef ={x|x € E,g*(x) = i}

Ei = {xlx € B,9(x) = i},

it follows from (2.12) that, Vx € Ef N E;,

A(x) = Pyx(i|x) — Pyx(4]x).
Since, from (2.9),
Pyx (i[x) — Pyix (j[x) > 0 Vx € E},Vj #1
from (3.1) and the fact that Px(x) > 0Vx € E,

pxpy(x)py (5)  Pxpy (x|6)py (2)
Px (x) Px (x)

>0 Vx € E;,Vi # j,

defining
px|y (x[1)py (4)

Pyx(ilx) = Pr(x)

we have, Vx € Ef N E;,
A(x) = Pyx(i[x) — Pyx(j|x)
< Pyix(ilx) — Prix(7[x) + pyx (7]x) — Py ix (¢]x)
= |Pyx(ilx) — Pyx(4|x) + pyx (§]x) — Dy x (é[x)|

< |Pyix (é]x) — Py x (E|x)| + | Pyx (4]%) — Dy x (4]%)]

and

/E?‘DE- A(X)PX(X)dX < /E?‘OE- |PX|Y(X|i)PY(i) _ﬁX|Y(X|i)ﬁy(i)|dx

+ | Pxjy (x[7) Py (4) = Px v (x]7)py (7)|dx.

E}NE;
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Using the fact that both collections of sets E; and E; partition E, we obtain
/ A(x)Px(x)dx = ) / A(x)Px (x)dx
E i7 JEiNE;
< X /E | Pxjy (x[i) Py (i) — px v (x[i)py (8) ldx +
i i

|Px v (x|7) Py (4) — px v (x|5)py (4)]dx
%:/Ej X|Y Y X|Y Y

= Z l/E* | Px v (x]2) Py (2) — pxv (x[i)py (4)|dx

i i

[ 1Py (i) Py (3) = By (<l (3
< Y [ IPxy (i) Py () = oy (el (3) i
i
where we have also used the fact that Ef N E; = (. O

This theorem states that, if the Bayes error is small, accurate density estimation is a
sufficient condition for high retrieval accuracy. In particular, good density estimation will

suffice to guarantee optimal performance when the feature transformation is the identity.

3.2 Strategies for image representation

Together the two theorems are a convenient tool to analyze the balance between feature
transformation and representation achieved by any retrieval strategy. We now proceed to

do so for the two predominant strategies in the literature.

3.2.1 The color strategy

The theorems suggest that all that really matters for accurate retrieval is good density es-
timation. Since no feature transformation can reduce the Bayes error, there seems to be no
advantage in using one. This is the rationale behind Strategy 1 (S1): avoid feature trans-
formations altogether and do all the estimation directly in Z. As Figure 3.1 illustrates, the
main problem with this strategy is that density estimation can be difficult in Z. Significant
emphasis must therefore be given to the feature representation which is required to rely on

a sophisticated density model. One possible solution, that has indeed become a de-facto
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standard for color-based retrieval [172, 139, 149, 96, 72, 150, 163, 164, 125, 68, 44, 167, 43,
168, 17], is the histogram. This solution is illustrated in Figure 3.1 b).

@

a) b)

Figure 3.1: Example of a retrieval problem with four image classes. a) In the space of image
observations, the class densities can have complicated shapes. b) Strategy 1 is to simply

model the class densities as accurately as possible.

3.2.2 The texture strategy

Since accurate density estimation is usually a difficult problem [184, 162, 39|, a feature
transformation can be helpful if it makes estimation significantly easier in A than what it
is in Z. The rationale behind Strategy 2 (S2) is to exploit this as much as possible: find a
feature transformation that clearly separates the image classes in X, rendering estimation
trivial. Ideally, in X, each class should be characterized by a simple parametric density,

such as the Gaussians in Figure 3.2, and a simple classifier should be able to guarantee
performance close to the Bayes error.

@  o°

zZ X

Figure 3.2: Example retrieval problem with four image classes. Strategy 2 is to find a

feature transformation such that density estimation is much easier in X than in Z.
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Strategy S2 has become prevalent in the texture literature, where numerous feature
transformations have been proposed to achieve good discrimination between different tex-
ture classes [163, 24, 96, 134, 102, 137, 40, 104, 178, 144, 174, 21, 176]. These transformations
are then combined with simple similarity functions, like the Mahalanobis and Euclidean dis-
tances or variations of these, that assume Gaussianity in X. More recently it has also been

embraced by many retrieval systems [15, 118, 175, 150, 139, 153, 163, 96, 129, 7].

3.2.3 A critical analysis

Overall, none of the two strategies is consistently better than the other. While S1 has
worked better for object recognition and color-based retrieval, S2 has proven more effective
for the databases used by the texture community. Unfortunately, none of the two strategies
is viable when the goal is to jointly model color and texture in the context of generic image

databases.

Limitations of strategy S1

While it works reasonably well when Z is a low-dimensional space, e.g. the 3-D space of
pixel colors, S1 is of very limited use in high dimensions. This is a consequence of the well
known curse of dimensionality: in higher dimensions, modeling requires more parameters
and more data is required to achieve accurate estimation. Typically these relationships are
non-linear. For example, the number of elements in the covariance matrix of a Gaussian is
quadratic in the dimension of the space, and the number of cells in the histogram model

increases exponentially with it'.

In particular, for ¢ color channels and observations with b pixels, the dimension of Z
is n = ¢b. Hence, the complexity is at least linear and, in the case of the histogram
exponential, in the size of the region of support of the observations. Consequently, accurate
joint density estimates can only be obtained over very small spatial neighborhoods and the
resulting representations cannot capture the spatial dependencies that are crucial for fine

image discrimination. This is illustrated by Figure 3.3 where we present two images that,

! Assuming that the number of divisions in each coordinate axis is held constant.
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although visually very dissimilar, are characterized by the same histogram [shown in c)].
In order to distinguish between these images, the representation must capture the fact that
while on b) the white pixels cluster spatially, the same does not happen on a). This is
an impossible task if the measurements do not have spatial support, e.g. the pixel colors

commonly used under S1.

a) b) c)

Figure 3.3: a) An homogeneous and b) a non-homogeneous image that are visually dissimilar

but have the same color histogram, shown in c).

Of course, there is no law stating that histograms cannot be computed in high dimen-
sions, but in practice it is impossible to guarantee that the upper bound of Theorem 3

remains close to the Bayes error.

Limitations of strategy S2

For strategy S2, the main problem is the assumption that it is always possible to find a
transformation that maps a collection of complicated densities in Z into a collection of
simple densities in X', without compromising Bayes error. The following theorem shows
that, for multi-modal class-conditional densities, this is not possible with a generic feature

transformation.

Theorem 4 Consider a retrieval system with observation space Z. If there exists a feature
transformation T

T:Z—=X

that preserves the Bayes error

LYy = L% (3.5)
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and maps a multi-modal density Pgy(2]i) on Z into a unimodal density Pxy(x|i) on X

then 1) T is non-linear, and 2) T depends on Pgy(ali).

Proof: From Theorem 2, (3.5) only holds if T is invertible, in which case [114]
det [J(z)] #0 Vz

where J(z) the Jacobian of T evaluated at z

oT;

Jij(z) = [DT(2)];; = 8—Z]

(z) (3.6)

and D,T(z) the vector derivative? of T(z) with respect to z. It follows, from the change of

variables theorem [124], that the densities in Z and X are related by
Py (T(2)]i) = det [J~"(2)] Py (a]i). (3.7)

If T is linear T(z) = Az then J(z) = A and, up to a scale factor, the two densities are

equal

Pyiy(T(2)]i) = det [A™"] Pgy(a]i).

Hence, if Pzy(zli) is multi-modal then so is Px|y(7'(z)|i). This proves the first part of the

theorem. If T is non-linear, by taking derivatives on both sides of (3.7)

Dy [det[J = (2)]Pgy (ali)] = DyPxiy(T(2)s)
_ DxPx|Y(x|i)‘x:T(z) J(z)
and
Dy ()|, = D [detl ™ () Py (2li)] 77 (2), (38)

from which Dy Px |y (x|i)|x=7(z) = 0 if and only if D, [det[J_l(z)]Pz|Y(z|i)] is in the null
space of J~1(z). Since J(z) has full rank,

DxPx|Y(x|i)‘ =0 D2 [det[J—l(z)]Pz|Y(z|i)] —0.

X=

It follows that, if x = T'(z) is the maximum of Pxy(x|i), then

Dy (det]J ! (2)]) Pyjy (ali) + det[J ™" (2)] D, Py (2li) = 0,

2Several definitions have been proposed for the vector derivative. The one adopted here, equation (3.6),

is that used in [114].
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1
det[J1(z)]

D,(det[J ' (z)]) = —szPZW(ZH)a

det[J(z)] |
D llog Pyy(ali)| .
det[J (z)]

Since the log is a monotonic function, this means that Papy (ali) has a critical point at 7~ 1(x).

For most parametric densities, Px|y(x|i) only has one critical point, implying that this will
be the only critical point of %' In any case, it follows that T depends on Pz)y(z[%).

|

The theorem explains why most texture retrieval approaches work well on databases
of homogeneous images (like that of Figure 3.3 a)), but clearly fail when this is not the
case. Since the pixel colors of non-homogeneous images (like that of Figure 3.3 b)) have
different statistics according to their spatial location, the associated densities are inherently
multi-modal. It is therefore impossible to find a generic transformation mapping them into

a set of unimodal densities without compromising the Bayes error.

Yet, the vast majority of texture retrieval methods are based on a feature transforma-
tions that does not depend on the class conditional pdfs and the Gaussian representation
(implicit in quadratic metrics like the Mahalanobis distance) [137, 21, 144, 178, 163, 96, 134,
102, 104, 174]. It is therefore not surprising that they cannot guarantee low Bayes error in
X. While data-dependent transformations have been proposed in the literature [40, 176],
these usually imply finding a set of discriminant features that can only be computed by con-
sidering all the image classes simultaneously. This is impossible in the CBIR context since
1) there may be too many classes, and 2) the feature transformation has to be recomputed

every time the database changes.

Putting it plainly, the theorem states that there is no such thing as a “free lunch”. If
we want to rely on simple models for density estimation, we will necessarily have to rely
on a complicated feature transformation. And, in the end, the complexity of finding such
a transformation may very well be orders of magnitude greater than that required by more
sophisticated density estimation. Why then has the texture community been so focused on
the question of finding good features for texture characterization? One possible explanation

is that this is an historical consequence of the assumption that different textures can always
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be cleanly segmented and a texture classifier will operate on homogeneous texture patches®.

>0

zZ X

Figure 3.4: When the classes are Gaussian in Z, a feature transformation can help by

reducing their overlap in X.

Since, by definition, homogeneous images have similar statistics everywhere, the densi-
ties of their observations are close to unimodal and any sensible feature transformation will
generate unimodal densities in X'. For example, any linear transformation will generate a
collection of Gaussians in X if the class-conditional pdfs are already Gaussian in Z. In this
case, as illustrated by Figure 3.4, a feature transformation can allow significant improve-
ments in classification accuracy by making the classes in X more clearly separated than

they are in Z.

In practice, however, it is arguable that the segmentation problem can be cleanly solved
before recognition. In fact, it it may never be possible to guarantee that the classifier will
process samples from unimodal distributions. In this case, Theorem 4 shows that strategy
S2 is hopeless as long as one insists on preserving the Bayes error. Unfortunately, unless
this is the case, there is no guarantee that good performance in X will imply good accuracy

in Z, the ultimate goal of the retrieval system.

3.3 An alternative strategy

In the context of minimizing probability of error, the two standard strategies can be seen
as two ends of a continuum: while strategy S1 is intransigent with respect to any loss

in Bayes error and therefore asks too much from the feature representation; strategy S2

3Most of the databases used to evaluate texture recognition are indeed composed of homogeneous images.
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constrains the representation to trivial models, expecting the feature transformation to do

the impossible.

It seems that a wiser position would be to stand somewhere in between the two extrema.
Since the overall probability of error is upper bounded by the sum of the Bayes and estima-
tion errors, we need to consider the two simultaneously. While the crucial requirement for
low Bayes error is invertability of the feature transformation, the crucial requirement for low
estimation error is low-dimensionality in X. Since we want Z to be high-dimensional, the
two requirements are conflicting and a trade-off between invertability and dimensionality
is required. This means that both the feature transformation and representation have an

important role in the overall representation.

On one hand, the feature transformation should provide the dimensionality reduction
necessary for density estimation to be feasible (but no more). On the other hand, the feature
representation should be expressive enough to allow accurate estimates without requiring
the dimension of X to be too low, therefore allowing the transformation to be close to

invertible. This is the main idea behind our strategy.

Like strategy S2, we rely on a feature transformation. However, we limit its role to
enabling dimensionality reduction; i.e. if we define a feature transformation to be of dimen-

sionality reduction level n — k£ when
T:R"— R* k<n,

then the the optimal feature transformation is the one that, for a given level of dimen-
sionality reduction, is as close to invertible as possible. The idea of close to invertible
transformation is intimately related to the idea of semantics-preserving compression advo-
cated in the design of the Photobook system [129]. Here, we replace the idea of preserving
semantics with the simpler and more generic goal of preserving information. It is very
difficult to define semantics-preserving transformations without restricting databases to a

specific domain or assuming the existence of a perfect segmentation algorithm.

Like strategy S1, we also place strong emphasis on the feature representation. Here, the
goal is to guarantee that we will be operating as close to the Bayes error as possible for all

levels of dimensionality reduction. In particular, as illustrated by Figure 3.5, we look for

51



the representation that simultaneously satisfies the following requirements:

e like the Gaussian, is computationally tractable in high dimensions;

e like the histogram, can capture the details of multi-modal densities.

Number of modes

Gaussian

Dimensions

Figure 3.5: The space of feature representations. The histogram can account for multi-
modal distributions, but is infeasible to compute in high dimensional feature spaces. The
Gaussian is unimodal, but can be computed in high dimensions. The shaded area represents
the region of the space where new feature representations are needed for the implementation

of generic retrieval systems.

In the next chapter, we study the issue of dimensionality reduction. Feature represen-

tation is addressed in Chapter 5.
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