Chapter 7

Short-term learning

There are various reasons to doubt that any retrieval system (no matter how sophisticated)
will always be able to find the desired images in response to the first query from a user. This
is due to 1) the difficulty of the image understanding problem and 2) the fact that users
themselves are not always sure of what they want to retrieve before browsing through the
database. In practice, it means that retrieval is always an interactive process, consisting of
the following sequence of events: 1) user provides a query, 2) system retrieves best matches,

3) user selects a new query, 4) process is iterated.

The interactive nature of the retrieval problem can be both a blessing and a curse for
retrieval systems. On one hand, feedback provided by the user can be exploited to guide
the search. This is a major departure from traditional vision problems and makes it feasible
to build effective systems without solving the complete artificial intelligence problem [132].
In this context, a retrieval system is nothing more than an interface between an intelligent
high-level system (the user’s brain) that can perform amazing feats in terms of visual
interpretation but is limited in speed, and a low-level system (the computer) that has very

limited visual abilities but can perform low-level operations very efficiently.

On the other hand, users tend to be frustrated if the system does not appear to know
how to integrate their feedback. This means that the low-level retrieval system cannot
be completely dumb and, at the very least, should be able to integrate the information

provided by the user throughout the entire course of interaction. Otherwise, it will simply

118

keep oscillating between the image classes that best satisfy the latest query and convergence

to the right solution will be difficult.

Consequently, in addition to a powerful image representation, a good retrieval system
must also incorporate inference mechanisms to facilitate the user-interaction. However, the
two problems cannot be solved in isolation, as the careless selection of the representation
will make inference more difficult and vice-versa. In the previous chapters, we have estab-
lished that probabilistic retrieval is a powerful solution to the problem of evaluating image

similarity. We now show that it is also the natural answer to the inference problem.

7.1 Prior work

The design of inference algorithing is particularly difficult for retrieval systems based on
holistic image similarity because, in this case, two different tasks must be accomplished.
First, the system must figure out what exactly is the set of visual image properties or
concepts that the user is interested in. Finding a good match for these concepts is possible
only after they are identified. As the example in Figure 6.1 demonstrates, the first step
cannot be accomplished from the observation of a single image, and several iterations of the
interaction between user and retrieval system must occur before the latter knows exactly
what the former is looking for, assuming that this is ever clear. By avoiding this first
learning step, systems relying on localized feedback need to concentrate only on the second

problem, which has easier solution.

Given this observation, it is somewhat surprising to realize that, while various solutions
have been presented to the inference problem (commonly referred to as relevance feedback
in the retrieval literature) [12, 32, 110, 150, 175], most of them are intimately related with
image representations that preclude local similarity. In fact, to the best of our knowledge,
only the “Four eyes” system [110] combines learning with local queries, and even these are

restricted to image patches of a sizeable dimension.

With respect to the inference mechanisms, both the “Four eyes” [110] and “PicHunter” [32]
systems are Bayesian in spirit. “Four eyes” pre-segments all the images in the database, and

groups all the resulting regions. Learning consists of finding the groupings that maximize

119

the product of the number of examples provided by the user with a prior grouping weight.
This can be seen as an approximation to Bayes rule. “PicHunter” defines a set of actions
that a user may take and, given the images retrieved at a given point, tries to estimate
the probabilities of the actions the user will take next. Upon observation of these actions,

Bayes rule gives the probability of each image in the database being the desired target.

The main limitations of these two systems are due to the fact that the underlying
image representations and similarity criteria are not conducive to learning per se. For
example, because there is no easy way to define priors for region groupings, in [110] this is
done through a greedy algorithm based on heuristics that are not always easy to justify or
guaranteed to lead to an interesting solution. On the other hand, because user modeling is a
difficult task, [32] relies on several simplifying assumptions and heuristics to estimate action
probabilities. These estimates can only be obtained through an ad-hoc function of image
similarity which is hard to believe valid for all or even most of the users the system will
encounter. Indeed it is not even clear that such a function can be derived when the action
set becomes more complicated than that supported by the simple interface of “PicHunter”.
For example, in the context of local queries, the action set would have to account for all

possible segmentations of the query image, which are not even defined a priori.

All these problems are eliminated by the Bayesian formulation of the retrieval problem
introduced in this thesis because it grounds all inferences directly on the image observations
selected by the user. In this chapter, we show that, by combining a probabilistic criteria
for image similarity with a generative model for image representation, there is no need
for heuristic algorithms to learn priors or heuristic functions relating image similarity and
the belief that a given image is the target. Under the new formulation, 1) the similarity
function is, by definition, this belief and 2) prior learning follows naturally from belief
propagation according to the laws of probability [127, 75, 85, 76]. Since all the necessary
beliefs are an automatic outcome of the similarity evaluation and all previous interaction can
be summarized by a small set of prior probabilities, this belief propagation is very simple,

intuitive, and extremely efficient from the points of view of computation and storage.

120

7.2 Bayesian relevance feedback

Following Cox et al. [32], we identify two types of searches: target search and open-ended
browsing. While in target search users seek to find an image from a specific image class,
in open-ended browsing they only have a vague idea of what they are looking for. It
is relatively easy to extend the Bayesian retrieval model so that it can account for both
situations. Instead of a single query' x, we consider a sequence of queries xi = {xi}
and, instead of a class indicator variable Y, we define a collection Y{ = {Y;}{_,, where ¢ is
the iteration number. The event Y; = ¢ indicates that the i** image class is the target for

iteration %.

Applying Theorem 1 and denoting the sequences {X;,...,X;} and {i1,...,4:} by X}

and ¢, respectively, the decision function that minimizes the probability of error is

g"(x1) = argmaxlog Pysx: (if[x1)
1
= argmax{log Py (x4 it) +log Py), (7.1)
1

where the maximum is taken over all the possible configurations of Y{. This is a well
known problem in many areas of engineering and statistics including dynamics systems [54],
speech processing [140], statistical learning [97], information theory [52] and, more recently,
machine vision [28, 122, 196], where Y is a variable that encodes the state of the world and

x observations from a phenomena to be modeled.

Application of the chain rule of probability leads to

g*(x}) = arg max{log Px, y; (x1 |i1) + log Py, (i1)
1

t
+ [log Py, xi-1 v (xi[x} ", 41) + log Py, a1 (i1)]}
k=2

Since, in practice, it is difficult to estimate the conditional probabilities Py X51 vz (xg|xPL, %)
and PYk|Y1k—1 (i1,]i¥~1) for large t (due to the combinatorial explosion of the number of possi-
bilities for the conditioning event), it is usually necessary to rely on simplifying assumptions.
A common solution is to rely on the following conditional independence assumption for the

observations.

INotice that, as in previous chapters, each query x; is a collection of N; feature vectors that we now

denote by x; = {xi,ly e 7xi7Ni}'

121

Assumption 5 Given the target image class for iteration k, the query for that iteration is

independent of the queries and target image classes for all other iterations

k—1 .
Py xh1 v (xg|x i) = Px, v, (xxlix)-

In the retrieval context, the assumption of conditional independence implies that the user
provides the retrieval systemn with new information at each iteration. This is reasonable
since users will tend to get frustrated if they feel that they have to repeat themselves, and

will probably stop using the system when conditional independence does not hold.

Under Assumption 5, we obtain what is usually referred to as an hidden Markov model
(HMM) [140] or a Markov source [52], and the probability of retrieval error is minimized

when
t t

g* (xi) = arg Ini?,x{log PY1 (Zl) + Z log ka|Yk (Xk|lk) + Z log PYk|Y1k_1 (Zk|z]1€_1)}
1 k=1 k=2

This model is valid for both target search and open-ended browsing. When the transition

probabilities PYk|Yk_1(ik|i’f_1) are unconstrained, users are free to change their mind as
1

frequently as they want and we have a model for browsing. If, on the other hand, switching

between states is not allowed,

s ek—1 L.
-F)Yls:|Y1k_1(,Lk|l1) = PYk|Yk—1(Zk|Zk—1) = 6ik_1,ik;

where 4. is the Kronecker delta function defined by (2.3), we have a model for target

th—1,ik
search; i.e., the user decides on a target image class at the start of the interaction according
to Py, (i1) and holds on to that target class until it is found, or the search aborted. In this
case, the retrieval model can be simplified into

t
9" (<h) = arg max{log Py (i) + Y log P, v (x¢li)}, (7.2)
k=1

where Y = Y;. In practice, estimating transition probabilities involves implementing an
actual retrieval system, assembling a body of users and collecting extensive statistics on
the patterns of interaction. This a “chicken and egg” problem since without the transition
probabilities it is not possible to implement a system that supports browsing. For this
reason, we restrict ourselves to the problem of target search, leaving the more general

question of open-ended browsing open for subsequent discussion.

122

7.3 Target search

Using Assumption 5 the chain rule of probability and Bayes rule, (7.2) can also be written

as

t—1

g*(x}) = arg miax{log Px, v (x¢]i) + Y _ log Px, v (xx|i) + log Py (i)}
k=1
t—1

= argmax{log Px,y (x:[¢) + > log ka|xr;—1,y(XkIX’f‘1, i) +1log Py (i)}
k=1
= argmax{log Px, |y (x:[i) + log Pxe-1y-(x{™"|i) + log Pr (i)}

= arg miax{log Px, |y (xt]¢) + log Py|x§_1 (i]xt 1)} (7.3)

By comparing (7.3) with (2.14), the term Py|xt1_1 (i|x}™!) can be seen simply as a prior belief
on the ability of the i*" image class to explain the query. However, unlike the straightforward
application of the Bayesian criteria, this is not a static prior determined by some arbitrarily
selected prior density. Instead, it is learned from the previous interaction between user and
retrieval system and summarizes all the information in this interaction that is relevant for

the decisions to be made in the future.
Recalling from (7.1) that, in target search mode,

g"(x1) = arg max{log Pyx; (i|x])} (7.4)

and comparing with (7.3) reveals an intuitive mechanism to integrate information over time.
Together, (7.3) and (7.4) state that the system’s beliefs on the user’s interests at time ¢ — 1
simply become the prior beliefs for iteration £. New data provided by the user at time ¢ are
then used to update these beliefs, generating the posteriors on which the retrieval decisions
are based. These posteriors in turn become the priors for iteration ¢ + 1. In other words,
prior beliefs are continuously updated from the observation of the interaction between user

and retrieval system. This is illustrated in Figure 7.1.

From a computational standpoint, the procedure is very efficient since the bulk of the
computation at each time step is due to the evaluation of the log-likelihood of the data in
the corresponding query. Notice that this is exactly equation (2.16) and would have to be
computed even in the absence of any learning. From the storage point of view, the efficiency

is even higher since the entire interaction history is reduced to a number per image class. It

123

AL

Bx@ix) o O R (Ax1)
P [
i) o= 2L O B GDE)
ty O<
M) ey P

Figure 7.1: Belief propagation across iterations of the retrieval process.

is a remarkable fact that this number alone enables decisions that are optimal with respect

to the entire interaction.

There is however one limitation associated with this belief propagation which is evident
from (7.2): for large ¢, the contribution of the new data provided by the user is very small
and the posterior probabilities tend to remain constant. This limitation can be avoided by

replacing (7.3) with the more generic maximization problem [11],
g"(x) = argmax{log Px, |y (xt[i) + Xlog Py xe-1 (ilx{™")},

where one looks for the image class that best explains the current query, under a constraint
on how well it explains all the previous interaction. The scalar A is a Lagrange multiplier

that weighs the importance of the past. Defining o = 1/(1+ A) € [0, 1] this is equivalent to

9" (x) = argmax{alog Px, v (xeli) + (1 — @) log Pyec1 (ixt ™)}, (7.5)

in which case the past is all that matters when o = 0, while all the emphasis is on the

current query when o = 1, and we recover (7.3) when o = 0.5. Rewriting this equation as

g'(x) = argmax{alog P,y (x:|i) +a(l —a)log Px, v (x¢-10)

(1~ @) log Pye-2(ifxt)}

= argmax{z (1 —a)tF log Px v (xgé) + (1 — a)tlog Py (i)}
a(l —)t can be seen as a decay factor that penalizes older terms.

124

7.4 Negative feedback

While positive feedback is a powerful addition to retrieval systems, there are many situ-
ations in CBIR where it is not sufficient to guarantee satisfactory performance. In such
situations, it is usually possible to attain significant improvements by combining it with
negative feedback. One example is when various image classes in the database have over-
lapping densities. This is illustrated in Figure 7.2, where we depict an hypothetical search
on a database with two major image classes that share a common attribute (large regions
of blue sky), but are different in other aspects (images in class A also contain regions of
white snow, while those in class B contain regions of grass). This could, for example, be

a database of recreation sites where class A contains pictures of a ski resort, while class B

contains pictures of the same resort but taken during the summer.

Figure 7.2: Two queries based on the same query image (shown on the left). The regions
blocked by the light green (dark red) rectangle are positive (negative) examples for the

search. Top: query for sky. Bottom: query for sky but not snow.

If the user starts with an image of class A (e.g. a picture of a snowy mountain), using
regions of sky as positive examples is not likely to quickly lead to the images of class B.

In fact, all other factors being equal, there is an equal likelihood that the retrieval system

125

will return images from the two classes. This is illustrated in the top row. On the other
hand, if the user can explicitly indicate interest in regions of sky but not in regions of snow,
the likelihood that only images from class B will be returned increases drastically. This is

illustrated in the bottom row.

Another example of the importance of negative feedback are situations in which there
does not appear to be a good positive example to select next. These happen when, in
response to user feedback, the system returns a collection of images that have already been
retrieved in previous iterations. Assuming the user has already given the system all the
possible positive feedback, the only way to escape from such situations is to choose some
regions that are not desirable and use them as negative feedback. In the example above,
when users get stuck with a screen full of pictures of white mountains, they can simply
select some regions of snow to escape the local minima. On the other hand, if only positive

examples were allowed, what to do next would not be clear. This is illustrated in Figure 7.3.

Figure 7.3: The user is looking for pictures taken in the summer and has already provided

the retrieval system with various examples of sky. What to do next is not clear, unless

negative examples are allowed.

In order to account for negative examples, we must penalize the classes under which
these score well while favoring the classes that assign a high score to the positive examples.
Unlike positive examples, for which the likelihood is known, it is not straightforward to
estimate the likelihood of a particular negative example given that the user is searching for
a certain image class. We denote the use of the vector z as a negative example by z and

rely on the following assumption.

126

Assumption 6 The likelihood that z will be used as a negative example, given that the
target is class i, is equal to the likelihood it will be used as a positive example given that the
target is any other class

Pgy (2]Y = 1) = Pgy(2|Y # 9). (7.6)

This assumption captures the intuition that, when searching for class ¢, a good negative
example is one that would be a good positive example if the user were looking for any
clags other than ¢. For example, if class ¢ is the only one that does not contain regions of
sky, using pieces of sky as negative examples will quickly eliminate the other images in the
database. Thus, one would expect the user to provide sky as a negative example with high

probability.

Denoting by z{ = {z;}!_, the collection of negative queries, these can be accounted for

by simply replacing (7.3) and (7.4) with

g (x}) = argmzax{longx,Z(ﬂxi,Z’i)}

= arg mzax{log thyzt|y(xt, Zt|l) + IOg PY|X§_1,Z§_1 (’L'|Xi_1, Zi_l)}

= arg mzax{log th|y(xt|i) + IOg PZt|Y(it|i) + logPy|xi_17Z§_1(i|x'i_1, ii_l)}

= arg mZa,X{IOg th|y(xt|i) + IOg PZt|Y(Zt|Y ?é ’L) + 10gPY|X§_1,Z§_1(i|xi_1’ 25_1)}

Pyz, (Y # i|z)
Py (Y #1)

. 1 — Py|z,(i|z¢) Gt t—1
= arg mzax {log th|Y(Xt|’L) + IOg]_——_Py(l) + IOg PY|X§_1,Z§_1(Z|XI s By)

= argmax {log th|y(xt|i) + log + log PY|X§_1 7t~ (i|x§_1, ii_l)}
i 2

where we have also used Assumptions 5 and 6 and the fact that Pg,(z;) does not depend on
i. Applying Bayes rule recursively then leads to the following natural generalization of (7.2)

—PY|zk(i|Zk)}
1 — Py () '

t
1
g*(x’i) = arg miax {log Py (i) + Z log ka|Y(Xk|i) + log
k=1

In practice, however, this equation is not very useful since the terms 1 — Py |z, (i|zx) and
1— Py (%) tend to be close to one. To see this, suppose that we are dealing with a database of
10,000 image classes which are assumed to be equally likely a priori: Py (¢) = 1/10,000. In

this case, even if the observation of z; increases, the probability of class ¢ one-hundred-fold

127

Py\z, (iz) = 1/100, the ratio (1 — Py gz, (i|z4))/(1 — Py (¢)) is only 0.99. This means that

negative examples have very small influence in the overall decision function.
An alternative solution is to choose the class ¢ that maximizes the posterior odds ra-
tio [55] between the hypotheses “class 7 is the target” and “class ¢ is not the target”

Py xt 7t (i x4, 2})
Pyixe z: (Y # i|x, 27)

g*(x}) = argmaxlog
2

1 th|Y(xt|i) PZt|Y(Zt|i) PY|Xt_1 zt—l(i|x1 ! ii 1)
= argmaxlog . - _
¢ th|Y(Xt|Y 7é Z) PZt|Y(Zt|Y 7'5) Y|xt 1 Zt 1P(Y 75 Z|xt 1 t 1)
Px, v (xt|i) Pz, v(z:|Y #1) Y|x§—1,z§—1(l|x1 Lz
= argmaxlog . ’ e
’ Pxy(xilY #14) Payy(zli) Pyjge1 gt (Y # il 207
—t—1
gl [Pxer Cel) Prig (¥ #ilm) Pricior g i)
J Pg, v (2]i) Pyix, (Y # ifxt) Pyiyeor e (Y #dlx™217)
1 t—1
— argmaxlog Px,jv(x¢]¢) | 1 — Py g, (i) Py xt=1 z-1(1 i~ a0
J Pgyjy(2e]d) |1 — Pyix, (ix) | Pyge-1 gt (Y #dlx] La
~ argmax { log Xt|Y(xt|Z) og Y|Xt_1 Zt—l(|x1 1 i’i 1)
i Pz, v (z¢]i) Pyixt-1 g1 (Y # ijxtt zt

where we have used the fact that (1 — Py g, (i|z:))/(1 — Pyx, (é|x¢)) = 1. Including a decay

factor to penalize ancient terms, we obtain

P x |7 P i1 t_l(i|x -Lgh
9" (x}) ~ arg max alogMHl—a)log T e (A
¢ Pz, v (24]2) Py|xt 17t (Y #dlx77 0,27)

This equation is similar to (7.5) but now the terms on the denominator penalize the image
clagsses that explain well the negative examples. Overall, the decision function favors image

classes that explain well the positive examples and poorly the negative ones.

There is however, under the posterior odds ratio, a tendency to over-emphasize the
importance of negative examples. In particular, any class with zero probability of generating
the negative examples will lead to an infinite ratio, even if it explains very poorly the positive

examples. To avoid this problem, we proceed in two steps:

e start by solving (7.5), i.e. sort the classes according to how well they explain the

positive examples.

128

e select the subset of the best N classes and solve (7.7) considering only the classes in

this subset;

Overall, the inference algorithm has two free parameters: the decay factor «, and the size
N of the window used in the second step. In the next section, we present experimental

evidence that the learning performance is quite robust to variations in these parameters.

7.5 Experimental evaluation

We performed several experiments to evaluate the improvements in retrieval performance
achievable with Bayesian inference. Because in an ordinary browsing scenario it is difficult to
know the ground truth for the retrieval operation (at least without going through the tedious
process of hand-labeling all images in the database), we relied on the mosaic databases (for

which ground truth is available).

7.5.1 Experimental setup

The goal of the experiments was to determine if it is possible to reach a desired target
image by starting from a weakly related one and providing feedback to the retrieval system.
This simulates the interaction between a real user and the CBIR system and is an iterative
process, where each iteration consists of 1) selecting a few examples, 2) using them as
queries for retrieval, and 3) examining the top V retrieved images to find examples for the
next iteration. V should be small since most users are not willing to go through lots of false

positives to find the next query.

The most challenging problem in automated testing is to determine a good strategy
for selecting the examples to be given to the system. The closer this strategy is to what
a real user would do, the higher the practical significance of the results. However, even
when there is clear ground truth for the retrieval (as is the case of the mosaic databases),
it is not completely clear how to make the selection. While it is obvious that regions of
texture or object classes that appear in the target should be used as positive feedback, it

is much harder to determine automatically what are good negative examples. As shown in

129

Figure 7.4, there are cases in which images from two different classes are visually similar.

Selecting images from one of these classes as a negative example for the other will be a

: .
"

disservice to the learner.

Figure 7.4: Examples of pairs of visually similar images that appear in different image

seee
S
g

classes.

While real users tend not to do this, it is hard to avoid such mistakes in an automated
setting, unless one does some sort of pre-classification of the database. Because we wanted to
avoid such pre-classification, we decided to stick with a simple selection procedure and live
with these mistakes. At each step of the iteration, examples were selected in the following
way: among the top V images returned by the retrieval system, the one with most sub-
images from image classes also present in the target was selected to be the next query. One
block from each sub-image in the query was then used as a positive (negative) example
if the texture or object depicted in that sub-image was also (was not) represented in the

target image.

This strategy is a worst-case scenario. First, the learner might be confused by conflicting
negative examples. Second, as seen in Chapter 6, better retrieval performance can be
achieved if more than one block from each region is included in the queries. However, using
only one block reduces the computational complexity of each iteration, allowing us to 1)
average results over several runs of the inference process and 2) experiment several values
for the @ and V' parameters of the retrieval system. We selected several (a, V') pairs and
performed 100 runs with random target images for each. In all cases, the initial query image

was the first in the database containing one sub-image in common with the target.

130

The performance of the learning algorithm can be evaluated in various ways. We con-
sidered two metrics: the percentage of the runs that converged to the right target and the
number of iterations required for convergence. Because, to prevent the learner from entering
loops, any given image could only be used once as a query, the algorithm can diverge in two
ways. Strong divergence occurs when, at a given time step, the images (among the top V')
that can be used as queries do not contain any sub-image in common with the target. In
such situation, a real user will tend to feel that the retrieval system is incoherent and abort
the search. Weak divergence occurs when all the top V images have previously been used.
This is a less troublesome situation because the user could simply look up more images (e.g.
the next V) to get new examples. To make the presentation compact, in the next sections

we only show results relative to strong divergence.

7.5.2 Positive feedback

Figure 7.5 presents plots of the convergence rate, mean number of iterations until conver-
gence, and number of iterations until divergence as a function of the decay factor o and the
number of matches V', for the two mosaic databases. In both cases, the inclusion of learning
(a < 1) typically increases the convergence rate. This increase can be very significant (as
high as 15%), and larger gains occur when the convergence rate without learning is low.
If the convergence rate is already high without learning, the inclusion of learning does not
change it significantly. In general, a precise selection of « is not crucial for achieving a rate

of convergence close to the best possible.

The rate of convergence is also affected by the number of matches V from which the user
is allowed to select the next query. While, as expected, the larger this number the faster the
convergence, a law of diminishing returns seems to be in effect: while the convergence rate
increases quickly when V is small; it levels off for large values of V. This is an interesting
result because there is usually a cost associated with a large V': users are not willing to go
through lots of image screens in order to find a suitable next query. Another interesting
result is that, under the assumption that users will only look at the first image screen
returned by the retrieval system (V' € [15,20]), the inclusion of learning leads to visible

convergence improvements.

131

% convergence

Iterations (convergence)

Iterations (strong div.)

100 100 T T T T T T
~
60 ~ g 60F s
g
5
=
50 S s0- s
H
5
8
40+ 0k 4
30+ 30+ s
= V=15
20+ V=20 20 [V=15]
= V=25 V=20
—- V=30 - z: gg
10 10 = .
o 1 1 1 1 1 1 1 1 1 o 1 1 1 1 1 1 1 1 1
05 055 06 065 07 075 08 08 09 095 05 055 06 065 07 075 08 08 09 095
a a
10 10
oF oF 1
8F 8F 1
7L 1

Iterations (convergence)

4t 4t 4
3t 3t .
-©- V=15 - V=15
2 V=20 2 V=20 1
-8 V=25 -8 V=25
— V=30 - V=30
[EFEEEEEEEEE 1t .
o | ; i | | ; i | i o | ; i | | ; i | i
0.5 0.55 0.6 0.65 0.7 0.75 08 0.85 0.9 0.95 0.5 0.55 0.6 0.65 0.7 0.75 08 0.85 0.9 0.95
a a
20 T 45
*
8 40
161

35

30
3
35
225
]
&
2
S 205
2%
2
E ~_
151 1
6k
- V=15 10 [-=v=15 ul
4F V=20 V=20
-5 V=25 = V=25
—4= = =
o V=30 5 [—==Vv=30 y
I i I I I I I o I I i I I I I I I
05 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

1

Figure 7.5: Plots, as a function of the learning factor «, of the convergence rate (top)

average number of iterations for convergence (middle) and divergence (bottom). In all plots

different curves correspond to different values for the number of images V' examined at the

end of each iteration. Left: Brodatz mosaic database. Right: Columbia mosaic database.

132

In terms of the number of iterations, when convergence occurs it is usually very fast
(from 4 to 8 iterations). On the other hand, the number of iterations until divergence is
usually well above 8. This indicates that, in practice, it would be easy to detect when the
retrieval system is not likely to converge: if the number of iterations is above 8 to 10, then
it is probably preferable to start a new query (from another initial image) than to insist on

the current one.

We next present examples of the relevance feedback process in the Columbia mosaic
database. Figure 7.6 depicts a search for a target image consisting of a plastic bottle,
a white hanger, a blue plastic donut, and a coffee cup. The top picture depicts the first
iteration of the retrieval process. The search starts with an image containing the blue donut
and, since the retrieval precision is high for this object, it appears in all the 15 retrieved
image slots. At this point the retrieval system has basically restricted the set of possible
matches to the K images that contain the blue donut. Hence, for each of the 15 slots, the
probability of the target image appearing in the slot is approximately 1/K. Since K << D,
where D is the database size, this is dramatically higher than the 1/D associated with
random guessing. Furthermore, if there are M images containing both the blue donut and
one of the three other objects of interest, the corresponding probability is M/K. This can
be high and it is therefore not surprising that, due to chance alone, one of the other objects
in the target will also appear among the retrieved images. This is indeed the case of the

first image in the second row, which also contains the white hanger.

By the selecting this image as next query (bottom picture) the user increases the prob-
ability per slot from approximately 1/K to approximately 1/L where L is the total number
of images containing the two query objects. Notice that, as more objects are included in
the query, the total number of images containing those objects decreases substantially and
the above probabilities increase drastically. In the example of the figure, because there are
less than 15 images in the entire database containing both objects, one would expect the
target to appear among the top 15 matches with very high probability. This is indeed the

case, and the target shows up as the first image in the second row.

The example illustrates how, provided that precision is high for the individual query

objects, retrieval can be very fast. In this sense, it corresponds to a best-case scenario since

133

MNext |
Previous

[#] VwLearning.t

File Settings |

lteration:

|1—

Query:

MNext |
Previous

Figure 7.6: Two iterations of positive feedback. In both cases, the target image is shown at
the top left and the query image immediately below. The query itself is based on a single
feature vector from each of the sub-images (8 x 8 neighborhood indicated in the center of

the sub-image) that are shared by the query and the target images. The number above

each retrieved image indicates the number of objects that it shares with the target.

134

the system will typically have to deal with objects for which precision is not so high. It is

in these situations that learning becomes most important.

Figures 7.7 and 7.8 show one such example. The target consists of a plastic bottle, a
container of adhesive tape, a clay cup, and a white mug, while the initial query is an image
containing the clay cup. Since there are various objects made of wood in the Columbia
database and these have surface properties visually similar to those of the clay cup, precision
is now significantly smaller (top picture of Figure 7.7): only 4 of the 15 top matches are
correct. This makes it difficult to zero in on the target for two fundamental reasons: first,
it is not as likely as in the previous example that the other objects in the target will appear
among the top matches. Second, when this happens, it is likely that the new target objects
will not share an image with the object used in the query. Both of these points are illustrated
by the example. First, the feedback process must be carried for three iterations before a
target object other than that in the query appears among the top matches. Second, when
this happens (top picture of Figure 7.8), the new object (tape container) is not part of an

image that also contains the clay cup.

In this situation, the most sensible option is to base the new query on the newly found
target object (tape container). However, in the absence of learning, it is unlikely that
the resulting matches will contain any instances of the query object used on the previous
iterations (clay cup) or the objects that are confounded with it. As illustrated by the bottom
picture of Figure 7.8, the role of learning is to favor images containing these objects. In the
example of the figure, 7 of the 15 images returned in response to a query based on the tape
container include the clay cup or visually similar objects (in addition to the tape container
itself). This enables new queries based on both target objects which, as seen in the previous
example, have an increased chance of success. In this particular case, it turns out that one

of the returned images is the target itself.

7.5.3 Negative feedback

Figure 7.9 presents plots of the convergence rate, mean number of iterations until conver-
gence, and strong divergence rate for the two mosaic databases when both positive and

negative feedback are used and the number, N, of top positive feedback matches considered

135

Eile Settings

Target:

File Settings |

Target:

Previous

Figure 7.7: First two iterations of positive feedback for the example discussed in the text.

136

® B Vwlearning.tel §

File Settings

Target:

lteration:
|8

Query:
S

MNext |
Previous

Figure 7.8: Last two iterations of positive feedback for the example discussed in the text.

137

_ I —
—d
700 . o .
g 6OF . g 6OF .
2 g
g g
S S
2 sof . 2 sof .
H H
H H
8 8
= a0t . S a0 7
30F . 30F .
201 7 201 & V=15N= 50 7
10t . 10t .
o i i i | | i i | i o i i i | i | i i
05 055 06 065 07 075 08 08 09 095 1 05 055 06 065 07 075 08 08 09 095 1
a a
25 : : 25 : :
-6~ V=15N= 50 -5~ V=15N= 50
-6~ V=20,N= 50 -6~ V=20,N= 50
-6~ V=25N= 50 -6~ V=25 N= 50
-5 V=30,N= 50 & V=30,N= 50
20 4 200 4

Iterations (convergence)

Iterations (convergence)

st . 5t .
0 I I I I I I I I I 0 I I I I I I I I I
0.5 0.55 0.6 0.65 0.7 0.75 08 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 08 0.85 0.9 0.95 1
a a
100 T T 100 T T
—©- V=15N= 50 -©- V=15N= 50
V=20,N= 50 V=20,N= 50
0 —&- V=25N= 50 90+ —&- V=25N= 50
—# V=30,N= 50 —# V=30,N= 50
80 q 80 q
70 1 70 1
g g
2 60 - S 60 4
3 3
> =3
5} 5}
2 2
T 501 — T 50 ml
=3 =3
2 2
=2 =2
@ L B @ L B
< 40 < 40
30+ q 30+ q
20+ q 20+ q
101 q 101 q
I & I & I & I & I I & I & I & I & I
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Figure 7.9: Plots, as a function of the learning factor «, of the convergence rate (top),

average number of iterations for convergence (middle), and divergence rate (bottom). In all

plots, different curves correspond to different values of the number of images V' examined

at the end of each iteration and N is number of top positive feedback matches that are

considered when negative feedback is taken into account. Left: Brodatz mosaic database.

Right: Columbia mosaic database.

138

in (7.7) is 50. Comparing with the plots of Figure 7.5, it is clear that the convergence rate is
significantly improved by the inclusion of negative feedback. In particular, for most values
of V the convergence rate is close to 100% and, in all cases, the rate of strong divergence is

Zero.

Since the convergence rate is high, learning is usually less relevant than it was in the
experiments where only positive feedback is allowed. Notice, however, that the best con-
vergence happens for values of o larger than 0.5. In fact, some degradation is noticeable
on Columbia as we approach the 0.5 limit. This degradation is related to the fact that the
number of iterations required for convergence is now larger than for positive feedback-only
retrieval. This increase in the number of iterations is more significant for the harder re-
trieval scenarios (smaller V') and particularly noticeable for V' = 15, where it reaches 100%

on Brodatz and and 50% on Columbia.

The combination of all these observations allows the following conclusions. First, in-
troducing negative feedback allows exploration of the database and this, in turn, leads to
better convergence. In particular, retrieval is never stopped because the user runs out of
examples to select next. Second, an increase in the number of iterations required for con-
vergence is inherent to this exploration. Notice that, while in Figure 7.5 this number was
approximately the same for all V, we now have significant differences. In particular, con-
vergence takes longer for smaller V', i.e. when retrieval is most difficult. This is a sensible
result, and suggests that the average number of iterations increases because retrieval takes
much longer on a small set of difficult cases. Our personal experience of interaction with

the retrieval system confirms this hypothesis.

The plots also expose a trade-off between the number of images that the user inspects
to find the next query (V) and the number of iterations for convergence. Notice that, by
increasing V from 15 (approximately one screen of images) to 30 (two screens), it is possible
to increase the speed of convergence to the levels of Figure 7.5. It remains to be studied
what would be more appealing to users: less iterations or a smaller number of images to

inspect per iteration.

Figure 7.10 shows the impact of the parameter N in the retrieval performance. The

figure depicts the convergence rate and speed for the Columbia mosaic database when

139

701 y or 7
g 6OF s g 6OF s
2 2
g 5
S S
2 501 - 2 501 4
H H
H 5
g g
S a0 9 = a0 J
a0 1 a0~ 1
20r & V=15 N=100 7 201 —&- V=15 N=150]
&~ V=20,N =100 -6 V=20,N =150
ol &~ V=25 N=100 il ol -6 V=25 N =150]
& V=30,N=100 5 V=30,N=150
o 1 1 1 1 1 1 1 1 1 o 1 1 1 1 1 1 1 1 1
05 055 06 065 07 075 08 08 09 095 1 05 055 06 065 07 075 08 08 09 095 1
a a
25 25

Iterations (convergence)
Iterations (convergence)

5¢ S V=15, N=100 1 5F & V=15 N=150 1
&~ V=20, N =100 NG

-6 V=20,N =150
-6~ V=25,N =100 TvIaNz

VR -6 V=25,N =150

. & V=30,N=150

0 L L L L L L L L L 0 L L L L L L L L L
0.5 0.55 0.6 0.65 0.7 0.75 08 0.85 0.9 0.95 1 0.5 0.55 0.6 0.65 0.7 0.75 08 0.85 0.9 0.95 1
a a

Figure 7.10: Plots, as a function of the learning factor & and number of images V' examined
at the end of each iteration, of the convergence rate (top) and average number of iterations
for convergence (bottom) on the Columbia mosaic database. N is number of top positive
feedback matches that are considered when negative feedback is taken into account. Left:

N =100. Right: N = 150.

140

N =100 and N = 150. Notice that, while performance is not as good as when N = 50,
it is still clearly superior to that achievable with positive feedback alone. This confirms
that a very precise selection of N is not required to guarantee the improvements inherent
to negative feedback. More drastic differences happen for the convergence speed, which
can vary substantially with N. Here, however, learning plays a significant role and, when
learning is in effect, the number of iterations necessary for convergence can also be reduced

to the levels of Figure 7.5.

We finish by presenting some examples of how negative feedback can indeed improve the
speed of convergence to the target image. Figure 7.11 depicts a search for a target image
consisting of a rubber frog, a toy boat, a plastic jar, and a plastic bottle. The top picture
depicts the first iteration of the retrieval process when only positive feedback is allowed.
The bottom picture depicts the same iteration when both positive and negative feedback
are used. The search starts with an image containing two views of the rubber frog, a plastic

donut, and a clay object.

Observation of the top picture reveals that there are several images in the database
where the rubber frog appears along with wooden objects, that have surface properties
similar to those of clay. When negative feedback is allowed and the clay object used as a
negative example, these images are penalized and the rank of the target image improves
significantly. Notice that, while for positive feedback only (top image) seven slots are
occupied by objects that have similar surface properties to those of the clay object, only
two appear when negative examples are also allowed (bottom image). Consequently, the

rank of the target image improves from higher than 15 to 6.

This example illustrates the importance of negative examples when dealing with over-
lapping images classes, as we had already suggested through Figure 7.2. For the mosaic
databases, overlap means images sharing the same objects. In this particular query, con-
vergence takes 6 iterations when the retrieval system is based on positive feedback alone

and 1 iteration when negative examples are also allowed.

The final example (Figures 7.12 and 7.13) illustrates the importance of negative examples
when it is not clear what positive examples to choose next. The target image is now

composed of a blue hanger, a stapler, a clay object, and a plastic jar. The search starts

141

[#] Vwlearning.tol

File Settings

Previous

[EIB VwLearning.tel #2

File Settings

Target:

EN

lteration:

.

Query:

MNext |
Previous

Figure 7.11: First iteration of relevance feedback for the same query image when only
positive (top) and both positive and negative feedback (bottom) are allowed. The query
itself is based on a single feature vector from each of the sub-images (8 x 8 neighborhood
indicated in the center of the sub-image). Positive examples are extracted from the sub-

images that are shared by the query and the target images, negative examples are extracted

from the remaining sub-images.

142

with the query image that was also used to initiate the previous example (two rubber frogs,

clay object, and plastic donut).

Figure 7.12 presents the first two iterations for the situation in which only positive feed-
back is allowed. The clay object is selected in the first iteration, and 15 images containing
clay objects are returned. While this is an impressive result in terms of precision/recall, it
is not very useful from the point of view of getting to the target image. In fact, it is not
clear that any of the returned images is closer to the target than the query image itself.
Since only positive examples are allowed, the only alternative is to choose another image
containing the clay object (preferably under a different view than the previously used). This
is exactly what happens, and an image containing two different views of the clay object is
selected for the next query. However, since the new examples are not all that different from
the ones used in the first iteration, the retrieved images are approximately the same. In
fact, out of the 15 images returned in the second iteration only 4 had not been already
retrieved in the first. This makes it even more difficult to decide on which image to use as
next query. It appears that the retrieval system is not doing much progress and, in a real
retrieval scenario, the user would tend to get frustrated. In fact, proceeding in this way

takes 8 iterations to get to the target.

Figure 7.13 presents results for the same query when negative feedback is allowed. In this
case, in addition to the clay objects, several ceramic objects are also returned in response
to the first query. Since there are no ceramic objects in the target, such objects are a good
selection to use as negative examples in the next iteration. This is what happens and, despite
the fact that the query images used in the two iterations are the same as in Figure 7.12, the
number of images retrieved in both iterations is now only 3. Since, as before, the positive
examples constrain these images to contain clay objects, it is not surprising that the target
is reached in the second iteration. This example confirms what had already been pointed
out in Figure 7.3: negative examples allow users to escape situations in which, because
there are no good positive examples to use next, it is difficult to make progress through

positive reinforcement.

143

® B Vwlearning.tel §

File Settings

Next |
Previous

[CIB VwLearning.tel
File Settings |

Figure 7.12: Two iterations of positive feedback.

144

[#] Vwlearning.tol #2

File Settings

Previous

@@ Viwlearning.tcl #2

Eile Settings

Target:

Previous

Figure 7.13: Two iterations of the query of Figure 7.12 but now allowing both positive and

negative feedback.

145

