Chapter 9

The RaBI retrieval system

In the previous chapters, we introduced a decision-theoretic formulation for the retrieval
problem and shown that it has interesting properties as a unified solution to the visual
recognition and learning problems. In this chapter, we discuss the implementation of a
CBIR system based on this decision-theoretic formulation. The “Retrieval as Bayesian
Inference” (RaBI) system is an image search engine designed to operate under the query
by example search paradigm. It implements most of the retrieval functionalities discussed
so far, including support for multimodal queries (visual and text), short- and long-term
learning, local queries, and both positive and negative examples. We next discuss the

implementation of each of these functionalities in some detail.

9.1 System overview

Figure 9.1 presents a generic block diagram of RaBI. The system consists of three software
modules: a Java client, a SQL server, and an image server. The Java client implements the
user interface and communicates with the image server through a simple custom protocol.
It is a light-weight applet that can run on any platform either in stand-alone mode or from
an Internet browser. Once connected to the image server, the client allows the user to select

a database and perform text-based searches, visual searches, or a combination of both.
The SQL server implements two functionalities. First, it allows one level of indirection

166

DATABASE SQL interface Client

" Client/Server Protocol
Image server

Figure 9.1: Block diagram of the RaBI retrieval system.

with respect to the physical location of all the files on the database. This simplifies the
process of relocating all the data if that becomes necessary. Second, it supports simple
text-based queries that can be performed very efficiently using standard SQL indexing
mechanisms. The image server accepts queries from the client, performs the searches, and
transmits back the search results. Some of the text-based searches are dispatched to the

SQL server. We next provide a more detailed description of each of the modules.

9.1.1 Client

The client consists of two major modules: a graphical user interface (GUI) and the client/server
protocol (CSP) interface. The GUI is presented in Figure 9.2. The larger image displayed
in the top left corner is the query canvas. By dragging the mouse over a given region of the
image, the user can select that region as a positive (by pressing the left button) or negative
(right button) query example. Boundaries of the image blocks in the positive examples are

displayed in green, while those in negative examples are shown in red.

Three text boxes are shown below the query canvas. The one on the left displays the
text keywords known to the system, the one in the middle shows which vision modules are
available, and the one on the left displays the visual concepts on which the system has been
trained. By selecting the “Show me” or ”Not interested in” buttons the user can select any

of the entries on the text boxes as positive or negative text examples, respectively. The

167

Eile Settings Beliefs Tools

Annotations: Vision Modules: Concepts:
coasts faces snow
coins M sky
design grass
europe
fire / 7
~ I ~ I K~
4 Show me: -~ Not interested in:

ancient faces

building

design

europe

Vi
] - W |=

Concept examples | Submit |

Figure 9.2: The GUI of the RaBI system.

selected keywords then appear in the two boxes in the bottom-left.

When the user presses the “Submit” button, the query (consisting of all the keywords,
the lists of coordinates of the selected image blocks, and the identifier of the query image) is
passed to the CSP interface that encodes all the information and dispatches it to the image
server. The server replies with a list of URLs that point to the images that best satisfy
the query. This response is decoded by the CSP interface and the top M x N images are
displayed on the right half of the GUI, as illustrated by Figure 9.2. The variables M and
N can be defined by the user. Two buttons are displayed above each image. By pressing
the button containing an arrow, the user can make the image appear in the query canvas
and use it as a basis for subsequent queries. By pressing the other button (pencil icon), the
user can change the text annotations associated with the image (e.g. give less weight to a

particular keyword).

Whenever visual examples are selected in the query canvas, it is possible to associate
a concept keyword with them. For this, the user simply needs to press the “Concept

examples” button. A dialog box then presents a list of the known concepts and the user

168

has the option of either selecting one of these concepts or defining a new one. The concept

examples are then sent to the image server and passed on to the concept learning algorithm.

Finally, the menus on the top-left corner of the interface allow a series of routine oper-
ations, such as clearing the short-term learning memory (when the user is starting a new
query), opening and closing databases, and setting the values of the various parameters of
the retrieval algorithm (e.g. the number of subspaces to be considered and the decay factor

« for learning).

The CSP is a simple communications protocol consisting of 1) a control sequence that
indicates what type of operation the user is carrying out (e.g. query, opening new database,
providing concept examples, etc.), and 2) a collection of data fields that depends on the

type of operation.

9.1.2 SQL server

The SQL database contains pointers to all the image information and implements a pre-
liminary image classification according to database and image class. It associates three
information components to each image: a database name, an image class, and two strings

indicating the image URL and the physical image location on disk.

The database classification establishes a very coarse image grouping. Current databases
are the ones discussed in the previous chapters: Corel, Columbia, Brodatz, Columbia mo-
saics, and Brodatz mosaics. Each database defines a set of keywords that allow finer image

grouping. These appear in the “Annotations” box of the GUI of Figure 9.2.

Image classes allow the user to restrict the query to a subset of the database, and can
be defined in several ways. For some databases, images are naturally grouped into obvious
classes. For example, Brodatz (Columbia) contains various views of each texture (object),
while Corel images are organized into thematic directories, each containing 100 images. In
these cases, textures, objects, and themes constitute natural classes for image grouping.
If a text model is available, classes can also be derived automatically, by associating each
image to the keyword that explains it with highest probability. Finally, classes can always
be defined manually.

169

Despite the support for database and image classes, there is no obligation on the part
of the user to use this information at any point of the retrieval operation. Instead, the
classification should be seen as a filtering mechanism to quickly eliminate many images that
are a priori known to be irrelevant for the search, and direct the attention of the retrieval
system to the images that matter. Since changing the database in the middle of a query
may lead to inconsistencies in learning, this mechanism can only be used at the beginning
of a visual retrieval session. If it is, this initial database/class query is based on standard

SQL indexing structures and, therefore, very efficient.

9.1.3 Image server

The image server has two main operation modes. In the database selection mode, it 1)
provides the client with a list of available databases and image classes, 2) receives a text-
based query relative to these, and 3) dispatches this query to the SQL server. The SQL
server replies with the list of internal file paths and URLs associated with the images to
be considered in the subsequent visual queries. The image server then assembles all the

data-structures required for these queries and enters the visual query mode.

Seven different data-structures are assembled. The first is a collection of matrices con-
taining the mixture parameters that are required to evaluate the likelihood of the visual
query features according to (2.14). Two others are a text probability matriz, and a concept
probability matriz. In these matrices, each row corresponds to a textual or visual concept
and each column corresponds to one image, the entry 7, j containing the parameter log p; ;
required by (8.5). Textual concepts are keywords derived either from the text-model dis-
cussed in section 8.4 or from vision sensors. For example, a face detector can be applied
to each image in the database, assigning the “face” keyword to each image with a certain

probability. Visual concepts are learned over time as discussed in section 8.4.2.

The remaining data-structures are a visual likelihood buffer, a concept likelihood buffer,
a text likelihood buffer, and a short-term memory buffer. The first three hold information
relative to the current iteration of the retrieval process, while the fourth is reset only when
the user starts a new query. Their role is illustrated by Figure 9.3, which provides a graphical

depiction of the inner workings of the image server.

170

In response to a visual query, the image server uses the mixture parameters associated
with each image in the database and (2.14) to evaluate the log-likelihood of the visual
features. The resulting log-likelihoods are stored in the visual likelihood buffer. The textual
component of the query is then analyzed. The rows of the text and concept likelihood
matrices associated with the keywords and concepts selected in the query are added and
stored in the text and concept likelihood buffers, respectively. The log-likelihoods associated
with the current query are then evaluated by adding the three buffers. The following
step is to combine these log-likelihoods with the log-posterior probabilities given the past
interaction, that are stored in the short-term memory buffer. This is done according to (7.5),
i.e. by weighting the entries in the two buffers according to the memory decay factor o.

The result is a set of log posterior probabilities that are passed to an image ranking module.

Text probability matrix Concept probability matrix
Text query Concept query
Mixture models Image classes Image classes
gi\\\\\\\\\\\\ . .
g Visual T + 7 ES
=] Similarity g I g —T
2 =
>
\@/ \®/
CIIITITIT I CIIIIITIIITTIITIITT] I |
Visual Text Concept
likelihood likelihood likelihood
buffer buffer buffer
®
\H@H@) Delay
b
a
1-o =&)

Short-term memory

Figure 9.3: Block diagram of the image server.

As described, the process only accounts for positive examples. Extension to negative

examples is straightforward, simply requiring the duplication of the four buffers and ap-

171

plication of (7.7) instead of (7.5). As discussed in section 7.4, the main difference occurs
in the image ranking module. When only positive examples are considered, this module
simply orders the images by decreasing log-posterior probabilities. When negative examples
are present, the top N matches according to the positive examples are then re-ordered by
decreasing log posterior odds-ratio. The parameter N can be modified by the user, the

default being N = 50.

Given the list of top matches, the image server requests the corresponding URLs from
the SQL database and transmits them to the client using the CSP. The client simply displays
the images and waits further instructions from the user, upon which the entire query process

is repeated.

9.2 Implementation details

We conclude this chapter by discussing some implementation details of the RaBI system.
This discussion is intended mostly for those interested in replicating portions or the entirety
of the work described in the thesis. Although many of the details have already been men-
tioned in the previous chapters, we believe that it is useful to present a cohesive summary of
the most important points. We concentrate on the three components of the retrieval archi-

tecture: feature transformation, feature representation, and evaluation of image similarity.

Before proceeding to describe the details of each component we note that, even though
the theoretical formulation developed in the thesis is valid for any grouping of the database
images into image classes, in RaBI each image is currently considered as a class by itself
for the purposes of visual retrieval. In the future, we plan to investigate the impact of
more sophisticated hierarchical database organization strategies in the retrieval efficiency.

A preliminary step in this direction has, indeed, already been presented in [188].

9.2.1 Feature transformation

Given a database image, feature transformation currently consists of the following steps.

172

e Extract all 8 x 8 image blocks separated by d pixels in each dimension. d can be

defined by the user, the default value being d = 4.
e Compute the DCT for each block according to (4.11).

e Vectorize the 2-D DCT array into a row vector. While this can be done in several
ways, RaBI relies on the coefficient scanning mechanism defined by the MPEG [63]

standard.

e [f there are various color channels, interleave the corresponding vectors. For example,
if there are three color channels, the first three coefficients of the interleaved vector

contain the first coeflicient from each of the three color channels.

e RaBI currently uses the YBR color-space defined by MPEG, but this selection has not
been subject to detailed scrutiny. Better results may be possible with a perceptual

color space, e.g. HSV [163].

9.2.2 Feature representation

In RaBI, feature representation is based on Gaussian mixtures with a fixed number C of
classes. The default value is C' = 8, but can be modified when the database is initial-
ized. Several methods have been proposed in the literature to automatically determine
the number of mixture components in each model. These include minimum description
length [146], Akaike’s information criteria [81] and the Bayesian information criteria [23]
among others. Because these methods increase the complexity of density estimation by a
significant amount, we decided to use a fixed number of mixture components. Automatic
determination of the number of components may, however, be included in future versions

of RaBI.

All Gaussian mixture parameters are estimated using the EM algorithm [36, 143, 13].

The implementation is fairly standard, the only details worth mentioning are the following.

o All Gaussians have diagonal covariances.

e In order to avoid singularities, a variance limiting constraint is applied. This constraint

173

places a minimum value of 0.1 on the variance along each dimension of the feature

space.

e Initialization is performed with a vector quantizer designed by the LBG algorithm,

using a variation of the cell splitting method described in [58].

e In order to split a cell, 1) we compute the (diagonal) covariance matrix of all the points
that land inside it, and 2) replicate its centroid, adding to the replica a perturbation
in the direction of largest variance. The perturbation is the square root of this largest

variance.

e Given the codebook obtained with the LBG algorithm, we compute covariances and
mixing probabilities for each of the quantization cells. These, together with the cen-
troids contained in the codebook, provide an initial estimate for the mixture param-

eters.

e This initial estimate is refined with EM. Since significant changes usually only occur

in the first iterations, we limit these to eight.

9.2.3 Evaluation of image similarity

The evaluation of image similarity consists of the following steps.

e Given the list of query block coordinates, extract these blocks from the query image.

e Compute the DCT, vectorize, and interleave the color channels of each block as de-

scribed in section 9.2.1.
e Evaluate the likelihood under each database mixture model according to (2.16).

e To prevent numerical underflow, the likelihood of each feature vector is replaced by
a fixed threshold T before taking the logarithm if its value is smaller than 7. The

default value is T = 107300,

174

9.2.4 Vision modules

Currently, only a face detection module is implemented in RaBI. This face detector consists
of a set of libraries that were provided by Henry Rowley at CMU. It is described in [148].
Since vision sensors can be applied to the images in the database off-line, RaBI is highly
extensible. In fact, the system does not even need to know the implementation details of
the sensors, since all that is required is the table of probabilities generated by these. We

therefore expect to incorporate other vision sensors in RaBI in the future.

175

