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Motivation

* Although crowd-sourcing can scalably annotate
everyday objects, actions, or scenes data, It is hard
to do it on fine-grained expert domain, because
annotations require highly specialized and domain
specific knowledge.

* Annotation by specialists is usually too expensive
and rarely feasible at a large scale.

*Less label-intensive forms of learning, including few-
shot learning, transfer learning, semi-supervised
learning and self-supervised learning, still
underperform supervised learning.

*\WWe use machine teaching algorithms to train
crowdsource annotators to label data from
specialized domains and make scalable supervised
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learning possible.
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Preliminaries
- Machine teaching

|t IS assumed that the teacher can access to a much
larger example dataset D = {(x{,v1), ... (xn, Yn)}

\_

« Reference

Pel Wang

Kabir Nagrecha

Nuno Vasconcelos

SVCL, ECE, University of California, San Diego

*From this dataset, the teacher assembles a small
ordered subset £ = {(x1,y1), ... (xk, Vi)}
* The student learns on the selected £ < D and tries
to achieve the best trade-off between
Learning the optimal predictor f* for D
*Spending the least amount of effort, usually
measured by the cardinality of £

- Sub-optimal student assumption

* The student has limited capacity and memory.

MaxGrad

- Optimal student assumption

*Mainly focus on crowd sourcing context;

*The teaching set must be small;

Humans are good at few-shot learning scenery;
free-willing participants rated by their performance,

\

student model

- lterative machine teaching

optimal model > compare

— select examples -
teaching set

i

A large dataset

optimal student/
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- Select new examples by MaxGrad

Rp(f?)

\

* At iteration t, the teacher has access to the
population risk R4 (f%) and corresponding steepest
descent direction;

*The student can only learn from the teaching set
L1 of iteration t — 1 and newly selected examples
N;

MaxGrad selects N so that the steepest descent
direction on £t = £t~1 U Vis closet to g*.

ﬂlgm‘ithm 1 MaxGrad

Input Data D = {(x;, y@)}i\’;l codewords )/, max iter.
T, effort 7.

1: Imitialization: £° < 0, f*, D° « D.

2: fort ={1,...,T} do

3:  compute &; for all examples in D' 1.

4:  order examples by decreasing &; and select top 7

to create V.

5 teaching set update: £' < L7 UN?

6:  student update: f'T' = f*(L").

7. D'« DI\ N!

8: end for

!)utput L
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Gradient-based Algorithms for Machine Teaching

Experiment results

« On the simulated learners

" methods " methods
60 —— RANDOM &0 —— RANDOM
3 STRICT > 3 STRICT pe
<> —— EXPLAIN =% — EXPLAN /\Z*
§4o —— omnilMT SR, §4O —— omnilMT
= —— imiIMT ~ } 5 — imiMT
§ % - bbiMT -~ B § 0 - bbiMT P
3 20 MaxGrad 7 20 MaxGrad
= 10 ’// = 10
S 6 8itera(itionzs S s 6 8itere(;tionzs S
(a) butterflies (b) Chinese Characters
- On the real learners
/ Butterflies |[Chinese Char. \
RANDOM 65.20 47.05
STRICT 65.00 51.51
EXPLAIN 68.33 65.44
omnilMT* 70.07(18.30) | 64.36(19.58)
1mmiIMT™* 72.770(17.63)| 64.46(23.72)
bbIMT™ 76.09(18.05) | 64.37(19.57)
RANDOM™ 63.15(18.17)| 51.53(24.47)
\ MaxGrad 80.33(19.76) | 81.89(12.93) /

- Selected examples
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