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Motivation
• To visualize the deliberative nature of the inference process like 

humans for classifiers;

•Humans could reasonably oscillate between different interpretations;

• In the limit of highly ambiguous inputs it is even acceptable for 

different systems (or people) to make conflicting predictions, as long 

as they provide a convincing justification.
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• Attribution maps

• Difficulty scores

•Hesitancy score

•Entropy score

•Hardness score [2].

Evaluation
Explanations are usually difficult to evaluate, since explanation 

ground truth is usually not available.

• Human evaluation

MTurk interface

•Contrast: randomly cropped regions with the same size as insecurities;

•Results: turkers agreed amongst themselves on a and b for 59:4% of 

the insecurities and 33.7% of randomly cropped regions. Turkers

agreed with the algorithm for 51.9% of the insecurities and 26.3% of 

the random crops. 

• Evaluation by proxy tasks

•Define part, points on CUB200 and segments on segmentation 

datasets;

•Compute ambiguity strength (similarity) for all parts    , class pairs 

(𝑎, 𝑏), 

•Remain 20% strongest as ground truth set                                  ;

• To evaluate each insecurity

•On CUB200, precision and recall are used

•On segmentation datasets, IoU metric is used

Impact of different difficulty scores and attribution functions

• Visualization results

CUB200 [4]

ADE20K [5]

Explanation generation
The explanation consists of a set of insecurities.

• Insecurity generation

•Construct a set of candidate class ambiguities;

•Combine attribution maps of two ambiguous classes and difficulty;

•Resize and threshold.

Results
• Ablation study
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