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Abstract. Structure information has been increasingly incorporated into
computer vision field, whereas only a few tracking methods have em-
ployed the inner structure of the target. In this paper, we introduce a
dynamic graph with pairwise Markov property to model the structure
information between the inner parts of the target. The target tracking
is viewed as tracking a dynamic undirected graph whose nodes are the
target parts and edges are the interactions between parts. These target
parts within the graph waiting for matching are separated from the back-
ground with graph cut, and a spectral matching technique is exploited
to accomplish the graph tracking. With the help of an intuitive updat-
ing mechanism, our dynamic graph can robustly adapt to the variations
of target structure. Experimental results demonstrate that our struc-
tured tracker outperforms several state-of-the-art trackers in occlusion
and structure deformations.

1 Introduction

Visual tracking is an important area in computer vision community, and it has
a number of applications in the areas of video surveillance, human-computer
interaction, behavior analysis, etc. Generally speaking, most of recent tracking
methods focus on three aspects to improve the accuracy and robustness: feature,
such as pixel values [1], color [2], and texture [3, 4], representation model, such
as subspace learning [1], SVM [5], Boosting [3, 4] and sparse representation [6, 7],
and structure information, including [8–10]. Although structure information has
been widely considered in the fields of object detection [11], object recognition
[12], etc, only a few trackers take it into account.

In this paper, we introduce a structure model to improve the robustness
of our tracker to structure deformation. The structure information is gener-
ated by oversegmenting the target into several parts (superpixels) and modeling
the interactions between the neighboring parts. The appearances of parts and
their relations are incorporated into a dynamic undirected graph with pairwise
Markov property. Therefore, the tracking problem in our method is viewed as
the tracking of the undirected graph, which is also a matching problem between
the target graph G(V ′, E′) and the candidate graph G(V,E). During the process
of tracking, the candidate target parts are cut out with the help of MRF spatial
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prior, which is optimized by Graph Cut [13]. At the step of graph matching, the
optimal matching from candidate graph to target graph is interpreted as finding
the main cluster from assignment graph with spectral technique. The final posi-
tion of the target is determined by a series of successfully matched parts based
on their appearance likelihood and the relative location displacement with the
neighboring parts which is called structure likelihood.

The contributions of this work are summarized as follows. Firstly, the struc-
ture information is considered throughout our tracking process including candi-
date target parts selection, graph matching and target center location. Secondly,
an efficient moving object segmentation method at the level of superpixel is de-
veloped. Another contribution is that we firstly introduce graph matching into
tracking task. Finally, an intuitive and effective updating mechanism of dynamic
target graph is proposed to adapt to the structure variations of the target.

2 Related Works

General tracking approaches [14, 4, 3] represent the target as a bounding box
template, and intuitively no structure information is considered. An online incre-
mental subspace is modeled in [1] to robustly represent the target, which obtains
good performance with illumination variations. However, the rigid template up-
dating strategy undermines its robustness to non-rigid distortion and occlusion.
Some other trackers [3–5] employ SVM or Boosting classifiers to model the dif-
ference between the target and the background. Similarly, the ignorance of struc-
ture information also results in the bad performance in structure deformation
and occlusion. [6, 7] model the target as a sparse representation of a dictionary
constructed with historical parts appearance features, which are insensitive to
occlusion, whereas they fail to effectively adapt to structure variations.

The part-based model has wide applications in object recognition [12] and
detection [11], in which the states of parts are optimized as hidden states within
Conditional Random Field (CRF) [12] and Latent Support Vector Machine
(LSVM) [11] respectively. This kind of method needs a large number of training
samples to find the optimal structure model, which is infeasible in visual track-
ing due to inadequate training samples and high computation complexity. There
is also a few part-based models arising in tracking field [15, 9, 8, 2, 10]. Although
the target is represented as manually labeled parts in [15], only limited structure
information is incorporated and the template of each part does not update ever.
In [9], the fixed number of parts are generated without updating and the rela-
tive locations of parts are fixed too. Kwon et al. [8] take SIFT descriptor as its
part generation method which is very unstable and the tracking results usually
include bad tracked parts. The trackers proposed in [2, 10] rely on oversegmen-
tation to generate parts. The former tracker [2] only computes the probabilities
of parts belonging to the foreground without any structure constraints, which
is easily drifted away by other color-similar objects and whose tracking results
will shrink to unoccluded parts when occlusion happens. The latter tracker [10]
models the low-level superpixel correspondence with CRF during the process
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Fig. 1. (a) is the tracking window, (b) is the superpixel oversegmentation result, (c)
is the foreground/background separation result, and (d) is the construction of our
undirected graph with Markov property, where green squares represent nodes and red
lines mean the interactions between neighboring nodes.

of figure/ground segmentation, whereas the high complexity of CRF limits its
further application in visual tracking task.

Another work similar to ours is [16], in which Yang et al. resort to data mining
technique to discover auxiliary objects and combine them with the target into a
star topology graphical model for robust visual tracking. Its difference from ours
is that we focus on the structured representation of the target instead of the
correlation between the target and the surroundings. Our work also relates to
motion segmentation [17] and video segmentation [18], because the separation
of candidate target parts from background needs segmentation. However, our
segmentation is exploited to collect the candidate target parts, hence rough
segmentation at the level of superpixel instead of pixel is enough here.

3 Structured Appearance Model

At the beginning of our tracking, the tracking window is segmented into a set of
parts. To better represent the target with compact and perceptually meaningful
parts, we group pixels into superpixels. The Simple Linear Iterative Clustering
(SLIC) algorithm proposed in [19] is adopted here because it is efficient and has
compact results, and the results are shown in Fig. 1(b).

3.1 Spatial Prior with Graph Cut

Given a set of superpixels {Tp}, we need to collect the candidate target parts

set {Ti}P and construct the candidate graph G(V,E). A pairwise Markov Ran-
dom Field (MRF) is built here to separate the candidate foreground parts from
background. To better and more robustly represent the appearance of the tar-
get, a generative target color histogram and a discriminative SVM classifier are
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simultaneously combined to compute the unary potentials. The MRF energy is
specifically optimized as:

E (L) =
∑
p∈S

Dg
p (lp) + α1

∑
p∈S

Dd
p (lp) + α2

∑
p,q∈N

Vp,q(lp, lq) (1)

where L = {lp|lp ∈ {0, 1}, p ∈ S} is the labeling of superpixels set {Tp}. Dg
p (lp)

and Dd
p (lp) represent the unary potentials for superpixel Tp gotten from color

histogram and SVM classifier respectively. Vp,q(lp, lq) indicates the pairwise po-
tential for interacting superpixels Tp and Tq . S is the set of superpixels in the
tracking window, and N is the set of interacting pairs of superpixels who have
geometrically adjacent edges (red lines in Fig. 1(b)). α1 and α2 are the constant
parameters that balance the influences of these potential terms. We decide to
use Graph Cut [13] to solve the minimization of Equ. 1 because of its high run-
ning efficiency. Therefore, the summation of Dg

p (lp) and Dd
p (lp) in Equ. 1 can be

viewed as the T-link energy, and Vp,q(lp, lq) as the N-link energy in the maxflow
framework [13], where T-links connect superpixels with terminals and N-links
connect pairs of neighboring superpixels.

For the generative model, the normalized target RGB color histograms of
foreground Hf and background Hb are applied, and then the potential of every
superpixel is derived from the probability of every pixel P(Ci |Hb) within it.

Dg
p (lp) =

{
− 1

Np

∑Np

i=1 logP(Ci |Hb) lp = 0

− 1
Np

∑Np

i=1 logP(Ci |Hf ) lp = 1
(2)

where Ci is the RGB value of pixel i , and Np is the number of pixels in the
superpixel Tp. For the discriminative model, an online SVM [20] classifier is
applied and it is trained with RGB color histograms of superpixels.

Dd
p (lp) =

{
λ1ŷ(fp) lp = 0

1 − λ2ŷ(fp) lp = 1
(3)

where ŷ(fp) = w · Φ(fp) + b is the discriminant function of SVM classifier, fp
is the color histogram of superpixel Tp , and λ1 and λ2 are the constants. The
pairwise term Vp,q(lp, lq) captures the discontinuity between two neighboring
superpixels.

Vp,q(lp, lq) = exp{−D(fp, fq)} (4)

where D(fp, fq) is the X 2 distance between the color histograms fp and fq.
With the help of the foreground/background segmentation, the candidate graph
G(V,E) is constructed whose nodes are the cut out candidate parts and edges
are the interactions between nodes, as shown in Fig. 1(d). We define two parts
have interaction or relation if their location distance is smaller than θd · r, where
θd is the constant. r =

√
w · h/Ns is the average radius of superpixels, where w

and h are the width and height of the tracking window respectively and Ns is
the number of superpixels in the tracking window.
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3.2 Graph Matching with Spectral Technique

In this section, we firstly introduce graph matching into the tracking field and
explain its importance. A key aspect for our part-based tracker is to find the cor-
respondence between parts in sequential frames, and the correspondence is com-
pleted with the help of the target inner structure beside the appearance of inner
parts. Therefore, the graph matching problem can be viewed as an optimization
problem, in which the appearance features of parts as well as the geometric con-
straints between parts are incorporated. Given a set ofMp candidate parts {Ti}P
in G(V,E) which are separated from current frame, and a set of Mq target parts
{Ti′}Q in G(V ′, E′)which are collected from historical frames, a correspondence
mapping of assignments is a binary value set x = (x1

1, · · · , xk
mp

, · · · , xK
Mp

) where

xk
mp

∈ {0, 1}, k = 1, 2, · · · ,K, mp = 1, 2, · · · ,MP , and K is the number of candi-
date assignments for single part Ti which is chosen based on feature similarity.
For simplicity, we use xa to represent xk

mp
in x. For each assignment a = (i, i′),

the appearance features similarity da between Ti and Ti′ is applied to indicate
how well these two parts are matched. For each pair of assignments (a, b), where
b = (j, j′), an affinity measure θa,b is used to evaluate the compatibility between
assignments a and b, that is the geometric affinity between the parts pair (i , j ) in
G(V,E) and the parts pair (i ′, j ′) in G(V ′, E′). Therefore, the set of assignments
can be incorporated into an undirected assignment graph whose node weight is
da and edge weight is θa,b, and the optimization is formulated as:

E (x) =
∑
a∈S

dax
2
a +

∑
a,b∈N

θa,bxaxb (5)

where S is the set of assignments and N is the set of compatible pairs of as-
signments. Here, we define a and b are compatible assignments if Ti and Tj are
geometric neighbors, and Ti′ and Tj ′ are geometric neighbors at the same time.
Only one-to-one matching is allowed in our model, hence Equ. 5 has to subject
to the mapping constraints:∑

i=mp,i′

xa ≤ 1,
∑

i,i′=mq

xa ≤ 1 (6)

We transfer the assignment graph into an affinity symmetry matrix M , where

– M (a, a) = da = exp{−D(fi, fi′)} indicates how well an individual assign-
ment is matched, where D(fi, fi′) is the X 2 distance between two color fea-
tures fi and fi′ of parts Ti and Ti′ respectively.

– M (a, b) = θa,b denotes how well the two geometrically relative pairwise as-
signments a and b are compatible. If the two assignments are not compatible,
we set θa,b = 0, otherwise, θa,b = β ·exp{−1

r∥vi,j − vi′,j′∥2}, where vi,j is the
location vector from part Ti to Tj , β represents the influence of the pairwise
term and r is the average radius of superpixels. The property of undirected
graph owns the symmetry M (a, b) = M (b, a).
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Then, Equ. 5 can be reformulated as E (x) = xMxT . Given the mapping con-
straints in Equ. 6, the optimal assignment solution is x∗ = argmaxx (xMxT ).
We prefer to apply the spectral approach to solve the above objective function.
Similar to [21], graph matching equals to find the main cluster from the as-
signment graph and the optimization can be solved by eigenvector technique in
our paper. After the eigenvalue decomposition of affinity matrix M , the values of
main eigenvector are interpreted as the confidence of corresponding assignments.
We greedily and sequentially accept the assignments with largest confidence and
reject those assignments which are conflicted with the accepted assignments,
subjected to the one-to-one matching constraint described in Equ. 6.

4 Tracking Formulation

In our tracking method, a target is represented as a dynamic undirected graph
G(V ′, E′), as shown in Fig. 1(d). The target state and observation at time t are
defined as Zt = (Z1

t , Z
2
t , · · · , Zm

t ) and Ot respectively, where m is the number
of parts. The state of each part Ti is Z i

t = (lit,∆l it ), where l it is the position of
Ti, and ∆l it represents its location offset vector from target center. The Markov
property is considered to locate the target center in our method. Therefore, the
combined likelihood of each successfully matched part Ti including appearance
likelihood Pa and structure likelihood Ps can be computed as:

P(Ot|Z i
t ) = Pa(Ot|Z i

t ) · Ps(Ot|Z i
t )

= exp{−D(fi, fi′)−
∑

i,j∈N
i′,j′∈N ′

1

r
∥vi,j − vi′,j ′∥2} (7)

where D(, ) is the X 2 distance between color features, N and N ′ are the sets
of interacting parts in {Ti}P and {Ti′}Q , vi,j is the geometric location vector
from part Ti to Tj . The center of the target can be robustly estimated as:

lc =
n∑

i=1

P (Ot|Z i
t )∑n

i=1 P(Ot|Z i
t )
(lit +∆lit) (8)

where n is the number of successfully matched parts, and ∆lit in Z i
t is taken from

its corresponding matched part directly. In order to obtain more precise target
center, we perturb the target center with µ and modify the scale s so that the
bounding box will cover the most positive pixels and the least negative pixels.
The optimal scale s∗ and perturbation µ∗ can be obtained:

(µ∗, s∗) = argmax
µ,s

{γ ·Npos(lc + µ, s)−Nneg(lc + µ, s)} (9)

where N pos(lc + µ, s) and N neg(lc + µ, s) are the numbers of positive pixels and
negative pixels in the bounding box located at lc + µ with scale s respectively,
and γ is the term to balance the proposition of positive and negative pixels.
Then the final target locates at l∗c = lc + µ∗ with scale s∗.
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Algorithm 1 Proposed Tracking Algorithm

Initialization:
1. Initialize the SVM classifier and the target color histograms Hf and Hb.
2. Construct the target graph G(V ′,E ′) with Markov property.
Tracking:
while run do

1. Oversegment the tracking window into a set of superpixels {Tp}.
2. Separate the candidate target parts {Ti}P from the background with energy
minimization in Equ. 1, and construct the candidate graph G(V ,E).
3. Match the two graph G(V ′,E ′) and G(V ,E) with the spectral technique.
4. Compute the combined likelihood of each successfully matched part P(Ot|Z i

t ),
and locate the optimal target center with optimal scale by Equ. 8 and Equ. 9.
5. Update the appearance model and the dynamic target graph G(V ′,E ′) when
the updating conditions are satisfied.

end while

5 Online Update

There are two parts of our tracking framework needed to be updated online, that
is the appearance model including discriminative SVM classifier and generative
target color histogram, and the structure model. We adopt an online learned
SVM algorithm [20] to train the discriminative classifier with the color features
of newly coming samples (superpixels), which are collected periodically. Those
samples which are labeled as positive by graph cut in the target bounding box
are trained as positive and the others are viewed as negative. In order to avoid
the drift problem caused by bad updating samples, we simultaneously add the
samples collected from the initial frame into the training pool with the samples
collected from current frame. For the generative foreground and background
RGB histograms, we also incrementally update them, that is Hnew = Hinit +
Hold+Hcurrent, where Hinit, Hold and Hcurrent are the histograms of the initial
sample, the sum of historically collected samples and the newly coming sample
at current frame respectively. This appearance updating mechanism not only
keeps the initial information but also adapt to the appearance variations.

For updating our dynamic graph, an intuitive and effective strategy is adopted
here. We define three states for nodes updating: birth, stay and death.

– birth In the final located bounding box of the target, the newly gener-
ated node i that has not been matched with any node in the target graph
G(V ′, E′), will be viewed at the state of birth if its geometric Euclidian dis-
tance with other node di,i′ > θb · r, ∀i′ ∈ G(V ′, E′). This distance constraint
prevents the newly updated G(V ′, E′) from being too dense.

– stay The successfully matched node is viewed at the state of stay, and we
define node i is successfully matched if its appearance likelihood Pa > θa
and its structure likelihood Ps > θs.

– death The node will be viewed at the state of death if it has not been
successfully matched continuously for more than Nf frames.



8 Zhaowei Cai, Longyin Wen, Jianwei Yang, Zhen Lei, and Stan Z. Li

Fig. 2. The top row is the results of foreground/background separation in which the
numbers on the parts mean the indices of matched target parts. The bottom row is
the updating results of our dynamic graph where the numbers are the indices of target
parts and the red line represents interaction between two neighboring parts.

After locating the bounding box of the target, we will delete the nodes at
the state of death, keep the nodes at the state of stay and add the nodes at
the state of birth into the target graph G(V ′, E′), and then new edges will be
constructed according to the geometric relation between nodes. This intuitive
updating mechanism robustly adapts to structure variation, as illustrated in
Fig. 2. The detailed process of our tracker is described in Algorithm 1.

6 Experimental Results

6.1 Experiment Setup

In order to evaluate the superiority of our tracker, we test it on 8 challenging
sequences (5 of them are from prior works [22, 8, 18], and the last 3 are our
own). These sequences include most of the challenges: complex environment,
large scale changes, inner structure deformation, abrupt movement and severe
occlusion. The quantitative comparisons of bounding box based trackers includ-
ing IVT [1], MIL [4], ℓ1 [6], and TLD [14], and part based trackers including
Frag [9], HABT [15], BHMC [8] and SPT [2], are presented in Table 1, Table
2 and Fig. 3. More tracking results and our original datasets are available at
http://www.cbsr.ia.ac.cn/users/lywen/.

Our tracker is implemented in C++ code and runs approximately 1-3 frames
per second on a standard PC platform with 2.4 GHz CPU and 3 GB memory.
The parts of our tracker are generated by SLIC superpixel segmentation [19], in
which the compactness is set as 50. The number of superpixels varies according
to the size of the initial target, making sure the initial target includes at least 10
superpixels, and we usually set it between 200 to 600. The balance parameters for
graph cut minimization α1, α2, λ1 and λ2 are 0.1, 0.4, 1.0 and 1.5 respectively,
and θd for interaction construction is 1.5. At the step of graph matching, the
parameter β is 0.4 and K is 5. For updating, the LASVM is updated every 3
frames, target color histograms and graph model are updated every frame. θb
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is 0.7, θa is 0.4, θs is 0.5 and Nf locates in the interval [3,10] according to the
sequence. The local perturbation term µ ∈ [−4, 4] × [−4, 4], and γ is 3 in our
experiment. Moreover, we utilize the default parameters of other trackers which
are provided in their papers or codes and choose the best one of 5 runs.

6.2 Experiment Analysis

Our tracker successfully adapts to large appearance and structure variations, as
shown in Fig. 2. The accurate matching results with spectral technique ensures
that the target center can be located robustly. Besides, the appropriate updating
mechanism effectively constructs the dynamic graph on the fly, which is the
prerequisite of better graph matching. We also compare our tracking results
with other state-of-the-art trackers under different challenges, and we will give
detailed analysis in the following.

Heavy Occlusion: The targets in the sequences bluecar and lemming un-
dergo severe occlusion. It is difficult for TLD and HABT to locate the target
because it does not have any mechanism to resist severe occlusion, but on the
contrary, ℓ1 can precisely find the target when the blue car is severely occluded
by the red car, as depicted in Fig. 4. Although MIL, IVT and Frag are robust
under occlusion, they still do not have good performances in these sequence be-
cause other challenges such as shape deformation and rotation occurring before
occlusion have drifted these trackers away. BHMC and SPT shrink to the non-
occluded parts of the target since the inner structure information of the target
has not been appropriately considered. Our dynamic graph will keep the inner
structure of the target, hence our tracker robustly find the target even when
some parts of the target are invisible, as demonstrated in Fig. 4.

Structure Deformation: Structure deformation is a disaster for bounding
box based trackers, because the template features are totally different when se-
vere structure deformation happens. As shown in Fig. 4, IVT, MIL, TLD, and
ℓ1 nearly do not have satisfactory tracking results in the sequences waterski,
lipinski, yunakim and avatar. Differently, Frag, HABT, BHMC and SPT have
relatively better tracking results than bounding box based trackers in these se-
quences, because the part-based trackers are less sensitive to structure variation
than holistic appearance. However, the lack of updating and scale adjustment
still drives HABT and Frag to failure when quick and large structure defor-
mation occurs. The unstable tracking of single part is the reason why BHMC
cannot obtain appropriate bounding box of the target, and SPT always shrinks
to local region of the target because of lacking global structure constraints. Our
tracker have obvious advantage in handling structure deformation even in high
frequency, since the inner structure of the target is exploited carefully and the
dynamic graph robustly adapts to the structure deformation.

Illumination Variations: The frequent illumination variations in the se-
quence up lead other trackers to drift away quickly, but the incremental subspace
learning method provides IVT the ability to recognize the girl even when the
sunlight are blocked by the balloons for several times. Thanks to our appear-
ance updating mechanism that LASVM and color histogram are incrementally
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Seq. MIL[4] IVT[1] TLD[14] ℓ1[6] Frag[9] HABT[15] BHMC[8] SPT[2] Ours
lemming 14.9 128 167 140 82.8 107 158 7.15 8.61
waterski 17.1 34.1 20.8 42.6 78.5 16.0 116 9.57 8.94
lipinski 33.8 90.8 109 46.6 50.5 30.9 14.1 12.3 9.17
yunakim 59.4 142 39.4 70.6 50.4 27.0 - 16.8 15.6

transformer 47.7 139 25.5 269 36.6 141 23.2 10.1 14.6
bluecar 130 83.3 48.1 90.6 92.2 80.8 186 20.1 10.5
avatar 107 163 162 261 139 125 18.3 18.3 10.9
up 150 57.3 34.0 59.0 149 66.7 55.0 37.7 7.33

Table 1. Comparison results of average error center location in pixel.

Seq. Frames MIL[4] IVT[1] TLD[14] ℓ1[6] Frag[9] HABT[15] BHMC[8] SPT[2] Ours
lemming 1336 1112 284 234 130 733 523 120 1246 1246
waterski 95 57 66 62 58 44 73 5 85 89
lipinski 660 310 35 210 135 225 105 190 90 505
yunakim 571 74 25 65 15 55 159 - 293 501

transformer 124 48 49 50 38 50 26 78 124 124
bluecar 441 20 74 228 263 79 45 10 149 377
avatar 134 15 7 13 16 7 15 57 51 108
up 190 38 99 60 85 53 30 39 72 184

Table 2. The number of successfully tracked frames.
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Fig. 3. Tracking results of our tracker, MIL, IVT, TLD, ℓ1, Frag, HABT, BHMC and
SPT. The results of five trackers with relatively better performance are displayed.

updated with initial samples and newly coming samples, our tracker also can
resist the frequent appearance variations.

Abrupt Movement and Scaling: The abrupt jumping in waterski, lip-
inski, lipinski and avatar, and the large scaling variation in avatar are chal-
lenges for many trackers. Since we collect the candidate target parts with fore-
ground/background separation and dynamically add and delete the nodes in the
target graph, our tracker will not be undermined by the abrupt movement and
large scaling changes, as depicted in Fig. 3, Fig. 4, Table 1 and Table 2.

7 Conclusion

A novel online part-based tracker is proposed in this paper, in which the parts
semantically generated by oversegmentation and the interaction between parts
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waterski ♯004 waterski ♯065 waterski ♯077 waterski ♯092

lipinski ♯094 lipinski ♯255 lipinski ♯318 lipinski ♯654

yunakim ♯005 yunakim ♯176 yunakim ♯269 yunakim ♯563

bluecar ♯015 bluecar ♯276 bluecar ♯278 bluecar ♯409

avatar ♯005 avatar ♯040 avatar ♯096 avatar ♯131

up ♯039 up ♯096 up ♯118 up ♯161

Fig. 4. The results of our tracker, MIL, IVT, TLD, ℓ1, Frag, HABT, BHMC, and
SPT are depicted as red, black, yellow, cyan, purple, dark green, blue, light green, and
magenta rectangles respectively.

are modeled as a dynamic graph. The target tracking is interpreted as matching
the candidate graph to the target graph. The spatial prior with MRF helps us to
separate the candidate target parts from the background and form the candidate
graph. The matching is also modeled as an undirect graph, whose optimization
is solved with spectral technique. This holistic target tracking mechanism owns
more robustness because of the introduction of structure information.
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