 

 
This course provides an introduction to pattern recognition and statistical learning. Topics covered include: Bayesian decision theory; parameter estimation; maximum likelihood; the biasvariance tradeoff; Bayesian parameter estimation; the predictive distribution; conjugate and noninformative priors; dimensionality and dimensionality reduction; principal component analysis; Fisher's linear discriminant analysis; density estimation: parametric vs. kernelbased methods; mixture models; expectationmaximization; applications.  
Lectures:  W, 6:309:20 PM, PETER 101  
Instructor:  Nuno Vasconcelos  
n u n o @ e c e . u c s d . e d u, EBU15602  
office hours: Friday 9:3010:30AM  
TA:  Zhihang Ren  
zhr010 @ eng.ucsd.edu  
office hours: TBA  
Pengluo Wang  
pew067 @ eng.ucsd.edu  
office hours: TBA  
Chenghao Gong  
c2gong @ eng.ucsd.edu  
office hours: TBA  
Jose Joy  
josejoy94 @ gmail.com  
office hours: TBA  
Yucheng Huang  
yuh063 @ ucsd.edu  
office hours: TBA  
Qing Zhang  
qiz232 @ eng.ucsd.edu  
office hours: TBA  
Text:  Pattern Classification (2nd ed.)  
R. Duda, P. Hart, and D. Stork, Wiley Interscience, 2000  
Syllabus:  [ps, pdf]  
Homework:  Problem set 1 [ps, pdf,
data, intro slides] Issued: Lecture 4, Due: Lecture 6 (October 17)  
Problem set 2 [ps, pdf, data] Issued: Lecture 6, Due: Lecture 8 (October 24)  
Problem set 3 [ps, pdf,
data] Issued: Lecture 8, Due: Lecture 10 (October 31) (nothing to hand in)  
Problem set 4 [ps, pdf] Issued: Lecture 12, Due: Lecture 16 (November 21)  
Problem set 5 [ps, pdf] Issued: Lecture 16, Due: Lecture 20 (December 5)  
Note: all dates are tentative.  
Readings:  Lecture 1: introduction (DHS, chapter 1)  
Lecture 2: Bayesian decision theory (DHS, chapter 2) [slides]  
Lecture 3: Bayesian decision theory (DHS, chapter 2) [slides]  
Lecture 4: Gaussian classifier (DHS, chapter 2) [slides]  
Lecture 5: Gaussian classifier (DHS, chapter 2) [slides]  
Lecture 6: Maximumlikelihood estimation (DHS, chapter 3) [slides]  
Lecture 7: Bias and variance (DHS, chapter 9) [slides]  
Lecture 8: Bayesian parameter estimation (DHS, chapter 3) [slides]  
Lecture 9: Bayesian parameter estimation (DHS, chapter 3) [slides]  
Lecture 10: midterm review [pdf]  
Lecture 11: midterm  
Lecture 12: Conjugate and noninformative priors [slides]  
Lecture 13: Conjugate and noninformative priors [slides]  
Lecture 14: Kernelbased density estimates (DHS, chapter 4) [slides]  
Lecture 15: Mixture models [slides]  
Lecture 16: Expectationmaximization [slides]  
Lecture 17: Expectationmaximization [slides]  
Lecture 18: Expectationmaximization [slides]  
Lecture 19: Final review [pdf]  
Lecture 20: TBA 